R Graphics Cookbook 第3章 – Bar Graphs

简介:

3.1 基本条形图

library(ggplot2)

library(gcookbook)

pg_mean   #这是用到的数据 
  group weight 
1  ctrl  5.032 
2  trt1  4.661 
3  trt2  5.526

 

ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity")

image

x轴是连续变量还是因子,画出的图有所不同,这里的group是因子。

str(pg_mean)  
'data.frame':   3 obs. of  2 variables: 
 $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 2 3  #可以看出group是因子 
 $ weight: num  5.03 4.66 5.53

 

用fill设置填充色,用color设置边框颜色

ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity", fill="lightblue", color="black")

image

 

用我的计步数据试试:

Sys.setenv(JAVA_HOME='C:/Program Files/Java/jdk1.6.0_33/jre')

library(xlsx)

setwd("d:/shenlb/health")

fitbit <- read.xlsx(file="fitbit2014.xlsx", header=TRUE, sheetIndex=1)   #用到JAVA,比read.csv慢了不少

meanMonthStep <- aggregate(fitbit$step, by=list(format(fitbit$date,"%m")), mean)

colnames(meanMonthStep) <- c("month","step") #设置列名

ggplot(meanMonthStep, aes(x=month, y=step)) + geom_bar(stat="identity", fill="lightblue", color="black")

image

 

3.2 Grouping Bars Together

 

cabbage_exp 
  Cultivar Date Weight        sd  n         se 
1      c39  d16   3.18 0.9566144 10 0.30250803 
2      c39  d20   2.80 0.2788867 10 0.08819171 
3      c39  d21   2.74 0.9834181 10 0.31098410 
4      c52  d16   2.26 0.4452215 10 0.14079141 
5      c52  d20   3.11 0.7908505 10 0.25008887 
6      c52  d21   1.47 0.2110819 10 0.06674995

条形图的x轴通常是一个分类变量,y轴是连续变量,经常还会提供另一个分类变量,进行分组比较,这里用Cultivar,放在fill属性中(实际上还可以用其它显示样式,但填充色最容易区分不同的可视化对象),用dodge选项使它们互相躲避。

ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) + geom_bar(stat="identity", position="dodge")

image

如果没有用position=”dodge”选项,则是堆叠条形图。

ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) + geom_bar(stat="identity")

image

还可以用其它的调色板进行填充:

ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +  
geom_bar(stat="identity", position="dodge", color="black") + 
scale_fill_brewer(palette="Pastel1")

image

 

3.3. Making a Bar Graph of Counts

head(diamonds) 
  carat       cut color clarity depth table price    x    y    z 
1  0.23     Ideal     E     SI2  61.5    55   326 3.95 3.98 2.43 
2  0.21   Premium     E     SI1  59.8    61   326 3.89 3.84 2.31 
3  0.23      Good     E     VS1  56.9    65   327 4.05 4.07 2.31 
4  0.29   Premium     I     VS2  62.4    58   334 4.20 4.23 2.63 
5  0.31      Good     J     SI2  63.3    58   335 4.34 4.35 2.75 
6  0.24 Very Good     J    VVS2  62.8    57   336 3.94 3.96 2.48

如果只是想按某个分类变量统计出现的个数,则:

ggplot(diamonds, aes(x=cut)) + geom_bar()

它实际上等价于下面的命令:

ggplot(diamonds, aes(x=cut)) + geom_bar(stat="bin")

image

 

上面的例子的x轴用的是分类变量,如果用连续变量,则会得到直方图。

ggplot(diamonds, aes(x=price)) + geom_bar(stat="bin")

这时最好用geom_histogram():

ggplot(diamonds, aes(x=price)) + geom_histogram()

image

 

3.4. Using Colors in a Bar Graph

把计步数据用指定的颜色填充。这里只有11个月,所以造了11种颜色。

ggplot(meanMonthStep, aes(x=month, y=step, fill=month)) + 
geom_bar(stat="identity", color="black") + 
scale_fill_manual(values=c("#111111", "#222222", "#333333", "#444444", "#555555", "#666666", 
"#777777", "#888888", "#999999", "#AAAAAA", "#BBBBBB"))

image

如果想移除右侧的图例,用guide=FALSE

ggplot(meanMonthStep, aes(x=month, y=step, fill=month)) + 
geom_bar(stat="identity", color="black") + 
scale_fill_manual(values=c("#111111", "#222222", "#333333", "#444444", "#555555", "#666666", 
"#777777", "#888888", "#999999", "#AAAAAA", "#BBBBBB"), guide=FALSE)

 

 

加文本标签

ggplot(meanMonthStep, aes(x=month, y=step)) + 
geom_bar(stat="identity", fill="lightblue", color="black") + 
geom_text(aes(label=floor(step)), vjust=-0.2)

image


本文转自申龙斌的程序人生博客园博文,原文链接:http://www.cnblogs.com/speeding/p/4166287.html,如需转载请自行联系原作者

http://www.cnblogs.com/speeding/ 

相关文章
|
7月前
|
Python
tkinter之place
tkinter之place
53 0
135Echarts - 路径图(Use lines to draw 1 million ny streets.)
135Echarts - 路径图(Use lines to draw 1 million ny streets.)
37 0
Design Tutorial: Learn from Math
Design Tutorial: Learn from Math
112 0
Design Tutorial: Learn from Math
|
C++ Windows
<转>Developing Custom Draw Controls in Visual C++
原谅链接:http://msdn.microsoft.com/en-us/library/ms364048(v=vs.80).aspx     Visual Studio 2005 Tom ArcherProgram Manager, Microsoft January 2006 Applie...
1311 0
|
C#
Beginner’s Tutorial: 3D Line and Border Effects in XAML
This mini-tutorial might be for you if you’re having troubles finding the right line colors to achieve simple 3D effects like these:   The solutio...
1149 0
|
Python Go 索引
NumPy Beginner's Guide 2e 带注释源码 九、使用 Matplotlib 绘图
版权声明:License CC BY-NC-SA 4.0 https://blog.csdn.net/wizardforcel/article/details/73008658 # ...
947 0
|
图形学
Creating custom data graphics in Visio
Creating custom data graphics in Visio https://blogs.
1238 0

热门文章

最新文章