开发者社区> 技术小胖子> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

Adding animations and effects to Flex tool tips

简介:
+关注继续查看
The following example shows how you can add custom animation and effects when displaying a tool tip in Flex
<?xml version="1.0" encoding="utf-8"?>
<!-- http://blog.flexexamples.com/2007/09/04/adding-animations-and-effects-to-flex-tool-tips/ -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
        layout
="vertical"
        verticalAlign
="middle"
        backgroundColor
="white"
        creationComplete
="init()">

    
<mx:Script>
        
<![CDATA[
            import mx.managers.ToolTipManager;

            private function init():void {
                ToolTipManager.hideDelay = 2000;
                ToolTipManager.showEffect = rotate;
                ToolTipManager.hideEffect = zoom;
            }
        
]]>
    
</mx:Script>

    
<mx:Style>
        @font-face {
            src: url("./fonts/arial.ttf");
            fontFamily: "ArialEmbedded";
        }

        ToolTip {
            fontFamily: ArialEmbedded;
        }
    
</mx:Style>

    
<mx:Rotate id="rotate" />
    
<mx:Zoom id="zoom" />

    
<mx:Button label="Roll over me to see tool tip"
            toolTip
="The quick brown fox" />

</mx:Application>

    本文转自 OldHawk  博客园博客,原文链接:http://www.cnblogs.com/taobataoma/archive/2008/01/13/1037095.html,如需转载请自行联系原作者



版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.3
(1). Let $\sed{A_\al}$ be a family of mutually commuting operators. Then, there exists a common Schur basis for $\sed{A_\al}$.
591 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.4
(1). The singular value decomposition leads tot eh polar decomposition: Every operator $A$ can be written as $A=UP$, where $U$ is unitary and $P$ is positive.
738 0
[再寄小读者之数学篇](2014-09-22 distributions and square integrable functions)
Suppose that $f\in L^2$, $g\in \scrD'$, if $$\bex f=g,\mbox{ in }\scrD', \eex$$ then $f=g\in L^2$.   In fact, $\scrD\subset L^2 \ra L^2\subset\scrD'$.
673 0
Exploiting hard filtered SQL Injections
http://websec.wordpress.com/2010/03/19/exploiting-hard-filtered-sql-injections/ While participa...
988 0
esapi php project howto
http://jackwillk.blogspot.com/2010/06/using-owasp-php-esapi-part-1.
649 0
21114
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载