跟我一起数据挖掘(1)——建立数据仓库的意义

简介:

数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。 为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。

1、多数据整合

将分布在各处的数据整合到统一的数据仓库中,以便处理。

上图是数据仓库的典型结构。

数据经过抽取、清理、装载、刷新等步骤完成统一的数据仓库化。

2、构建数据立方

通常数据仓库是对历史数据进行的多维度的分析,那么就需要构建数据立方体。每个维对应于模式中的一个或一组属性。来看一张图更深入的理解一下:

立方体的三个维度分别为地区、时间和产品,我们可以根据不同的维度分组,得到哪个地区哪个产品的销售件数、销售金额等多种数据,每个数据落到数据立方的相应的区域中。同时,数据立方也可以根据不同的维度进行上下钻取。

时间维度上可以向上钻取到年,向下钻取到月。地区维度可以向下钻取到某个地市的区,如果是跨国的向上钻取到国家,中国、日本等。商品可以向上钻取到分类,向下钻取到品牌。

3、事务数据记录

事务数据是指在一个处理过程中,如用户到超市的一次购买记录,网站的一次登录到点击流程,对应的记录方式为:

点击流这个概念更注重用户浏览网站的整个流程,网站日志中记录的用户点击就像是图上的“点”,而点击流更像是将这些“点”串起来形成的“线”。

形成事务数据记录,而记录的结果可以根据需要进行构建。

这些数据对于进行购物栏分析,频繁项集的挖掘非常有用。

4、其它类型数据

包括时间相关的序列数据、空间数据(如地图)、网页数据等多种数据格式。根据消息流可以进行入侵检测、通过时间序列可以进行趋势预测、通过顾客的意见,了解产品在市场被接受的程度,大数据已经深入了影响了我们的生活,而数据仓库的构建是重中之重。

目录
相关文章
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
探索大数据时代的关键技术:数据挖掘、可视化和数据仓库
探索大数据时代的关键技术:数据挖掘、可视化和数据仓库
516 0
|
3月前
|
存储 监控 数据挖掘
【计算机三级数据库技术】第14章 数据仓库与数据挖掘-
文章概述了数据仓库和数据挖掘技术的基本概念、决策支持系统的发展、数据仓库的设计与建造、运行与维护,以及联机分析处理(OLAP)与多维数据模型和数据挖掘技术的步骤及常见任务。
43 3
|
4月前
|
机器学习/深度学习 分布式计算 数据挖掘
数据仓库与数据挖掘技术的结合应用
【7月更文挑战第30天】数据仓库与数据挖掘技术的结合应用是现代企业实现高效决策和精准分析的重要手段。通过整合高质量的数据资源,利用先进的数据挖掘技术,企业可以更好地理解市场、客户和业务,从而制定科学的决策和战略。未来,随着技术的不断进步和应用场景的不断拓展,数据仓库与数据挖掘技术的结合应用将会为企业的发展提供更多机遇和挑战。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
数据仓库和数据挖掘基础
数据仓库和数据挖掘基础
49 1
|
6月前
|
存储 算法 安全
数据仓库与数据挖掘概述
数据仓库与数据挖掘概述
155 3
|
存储 数据采集 监控
建立数据仓库的基本准则
建立数据仓库的基本准则
149 0
|
存储 数据挖掘 OLAP
数据挖掘(7.1)--数据仓库
数据库因数据处理的需要而产生。例如,在20世纪60年代后期,美国为了战争的需要,将各种情报收集在一起,存储隐藏在计算机内,这就是数据库的起源。随着计算机技术的发展,数据库从文件系统阶段发展为数据库阶段,再到高级数据库阶段。现在,数据库已经广泛应用于实际应用、计算机技术和网络技术中,如分布式数据库、面向对象数据库和网络数据库等。
69 0
|
运维 安全 算法
数据仓库与数据挖掘(3)|学习笔记
快速学习数据仓库与数据挖掘(3)
数据仓库与数据挖掘(3)|学习笔记
|
监控 数据可视化 搜索推荐
数据仓库与数据挖掘(2)|学习笔记(二)
快速学习数据仓库与数据挖掘(2)
数据仓库与数据挖掘(2)|学习笔记(二)
|
机器学习/深度学习 传感器 自然语言处理
数据仓库与数据挖掘(2)|学习笔记(一)
快速学习数据仓库与数据挖掘(2)
数据仓库与数据挖掘(2)|学习笔记(一)

热门文章

最新文章