PostgreSQL 使用 PreparedStatement 导致查询慢的分析

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介:

实验环境:

DB is PostgreSQL version 8.2.15 

JDK1.8

测试一

使用JDBC查询一个SQL:

复制代码
public static void test1(String url, Properties props){
        String sql = "SELECT l.src_ip, l.location_id, "
                + "SUM(l.us_bytes) as up_usage, "
                + "SUM(l.ds_bytes) as down_usage, "
                + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                + "FROM unmapped_endpoint_location_hours l "
                + "where l.org_id = 195078 "
                + "AND date_time >= '2017-04-01 00:00:00.0' AND date_time < '2017-04-08 00:00:00.0' "
                + "AND l.location_id in (2638,2640,2654 ) "
                + "GROUP BY l.src_ip, l.location_id ";
        
        Connection conn = null;
        Statement sta = null;
        try {
            System.out.println("Start query1:" );
            long s_time = System.currentTimeMillis();
            conn = DriverManager.getConnection(url, props);
            sta = conn.createStatement();
            sta.execute(sql);
            System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                try {
                    conn.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
            if (sta != null) {
                try {
                    sta.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
        }
    }
复制代码

结果:

Start query1:
Using Time: 11519 ms

测试二

使用JDBC PreparedStatement 查询相同的SQL:

复制代码
public static void test2(String url, Properties props){
        String sql2 = "SELECT l.src_ip, l.location_id, "
                + "SUM(l.us_bytes) as up_usage, "
                + "SUM(l.ds_bytes) as down_usage, "
                + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                + "FROM unmapped_endpoint_location_hours l "
                + "where l.org_id = ? "
                + "AND date_time >= ? AND date_time < ? "
                + "AND l.location_id in (2638,2640,2654 ) "
                + "GROUP BY l.src_ip, l.location_id";
        
        Connection conn = null;
        PreparedStatement preSta = null;
        try {
            System.out.println("Start query2:");
            long s_time = System.currentTimeMillis();
            conn = DriverManager.getConnection(url, props);
            preSta = conn.prepareStatement(sql2);
            preSta.setString(1, "195078");
            preSta.setString(2, "2017-04-01 00:00:00.0");
            preSta.setString(3, "2017-04-09 00:00:00.0");
            preSta.executeQuery();
            System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                try {
                    conn.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
            if (preSta != null) {
                try {
                    preSta.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
        }
    }
复制代码

结果:

Start query2:
Using Time: 143031 ms

相同的SQL,测试二和测试一结果为什么差别这么大?

测试一的SQL没有使用PreparedStatement 方式,直接给了原始的SQL。测试二的使用了PreparedStatement ,但是在set参数的时候用的都是String。

两者查询速度相差10倍,这是不是很奇怪?

现在来做另一个实验:

测试三

使用JDBC PreparedStatement 查询相同的SQL:

复制代码
public static void test3(String url, Properties props){
        String sql2 = "SELECT l.src_ip, l.location_id, "
                + "SUM(l.us_bytes) as up_usage, "
                + "SUM(l.ds_bytes) as down_usage, "
                + "(SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage "
                + "FROM unmapped_endpoint_location_hours l "
                + "where l.org_id = ? "
                + "AND date_time >= ? AND date_time < ? "
                + "AND l.location_id in (2638,2640,2654 ) "
                + "GROUP BY l.src_ip, l.location_id";
        
        Connection conn = null;
        PreparedStatement preSta = null;
        try {
            System.out.println("Start query3:");
            long s_time = System.currentTimeMillis();
            conn = DriverManager.getConnection(url, props);
            preSta = conn.prepareStatement(sql2);
            
            int org_id = 195078;
            SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
            TimeZone.setDefault(TimeZone.getTimeZone("UTC"));
            Date d1 = null;
            Date d2 = null;
            try {
                d1 = df.parse("2017-04-01 00:00:00");
                d2 = df.parse("2017-04-09 00:00:00");
            } catch (ParseException e1) {
                e1.printStackTrace();
            }
            preSta.setInt(1, org_id);
            preSta.setTimestamp(2, new java.sql.Timestamp(d1.getTime()));
            preSta.setTimestamp(3, new java.sql.Timestamp(d2.getTime()));
            preSta.executeQuery();
            System.out.println("Using Time: " + (System.currentTimeMillis() - s_time));
        } catch (SQLException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                try {
                    conn.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
            if (preSta != null) {
                try {
                    preSta.close();
                } catch (SQLException e) {
                    e.printStackTrace();
                }
            }
        }
    }
复制代码

结果:

Start query3:
Using Time: 16245 ms

测试结果和测试一的结果差不多,为什么?

这次测试同样使用了PreparedStatement,但是在设置参数的时候指定了参数的类型。

explan analyze

查看explan

复制代码
dev=# explain analyze SELECT count(loc.name) AS totalNum
dev-# FROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usage
dev(#       FROM (SELECT l.src_ip, l.location_id,
dev(#                   SUM(l.us_bytes) as up_usage,
dev(#                   SUM(l.ds_bytes) as down_usage,
dev(#                   (SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage
dev(#             FROM unmapped_endpoint_location_hours l
dev(#             where l.org_id = 195078
dev(#                   AND date_time >= '2017-04-11 00:00:00.0' AND date_time < '2017-04-20 00:00:00.0'
dev(#                   AND l.location_id in (2638,2640)
dev(#                   GROUP BY l.src_ip, l.location_id ) t
dev(# WHERE t.total_usage > 0.0 ) m
dev-# LEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = 195078;
复制代码

Time: 15202.518 ms

复制代码
Prepare Expalin:

PREPARE  test(int,text,text,int) as
SELECT count(loc.name) AS totalNum
FROM (SELECT t.src_ip, t.location_id, t.up_usage, t.down_usage, t.total_usage
      FROM (SELECT l.src_ip, l.location_id,
                  SUM(l.us_bytes) as up_usage,
                  SUM(l.ds_bytes) as down_usage,
                  (SUM(l.us_bytes) + SUM(l.ds_bytes) ) as total_usage
            FROM unmapped_endpoint_location_hours l
            where l.org_id = $1
                  AND date_time >= $2 AND date_time < $3
                  AND l.location_id in (2638,2640)
                  GROUP BY l.src_ip, l.location_id ) t
WHERE t.total_usage > 0.0 ) m
LEFT OUTER JOIN locations loc on m.location_id = loc.id WHERE loc.org_id = $4;

Explain analyze EXECUTE test(195078,'2017-04-11 00:00:00.0','2017-04-20 00:00:00.0',195078);
dev=# EXECUTE test(195078,'2017-04-11 00:00:00.0','2017-04-20 00:00:00.0',195078);
复制代码

Time: 98794.544 ms

 

结论

PostgreSQL 在使用原始SQL的时候会用表中类型来查,能有效根据where条件过滤结果。

当参数都是使用String的时候,没有指定类型时,PostgreSQL没有先做类型转换,而是扫描了所有的数据,对所有的数据根据where条件过滤结果。

当查询参数指定类型的时候,PostgreSQL可以先根据where条件过滤结果。

 

相关连接:

It seems when using JDBC with prepare statement, the query will be slow in postgresql:

http://www.postgresql-archive.org/Slow-statement-when-using-JDBC-td3368379.html

http://grokbase.com/t/postgresql/pgsql-general/116t4ewawk/reusing-cached-prepared-statement-slow-after-5-executions

https://stackoverflow.com/questions/28236827/preparedstatement-very-slow-but-manual-query-quick


    本文转自阿凡卢博客园博客,原文链接:http://www.cnblogs.com/luxiaoxun/p/7131975.html,如需转载请自行联系原作者

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
消息中间件 存储 关系型数据库
PostgreSQL技术大讲堂 - 第33讲:并行查询管理
PostgreSQL从小白到专家,技术大讲堂 - 第33讲:并行查询管理
464 1
|
6月前
|
存储 关系型数据库 数据库
postgresql|数据库|提升查询性能的物化视图解析
postgresql|数据库|提升查询性能的物化视图解析
671 0
|
24天前
|
SQL 关系型数据库 数据库
PostgreSQL性能飙升的秘密:这几个调优技巧让你的数据库查询速度翻倍!
【10月更文挑战第25天】本文介绍了几种有效提升 PostgreSQL 数据库查询效率的方法,包括索引优化、查询优化、配置优化和硬件优化。通过合理设计索引、编写高效 SQL 查询、调整配置参数和选择合适硬件,可以显著提高数据库性能。
143 1
|
2月前
|
Oracle NoSQL 关系型数据库
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
主流数据库对比:MySQL、PostgreSQL、Oracle和Redis的优缺点分析
441 2
|
3月前
|
缓存 关系型数据库 数据库
PostgreSQL 查询性能
【8月更文挑战第5天】PostgreSQL 查询性能
78 8
|
5月前
|
SQL 关系型数据库 数据库
Python执行PostgreSQL数据库查询语句,并打印查询结果
本文介绍了如何使用Python连接和查询PostgreSQL数据库。首先,确保安装了`psycopg2`库,然后创建数据库连接函数。接着,展示如何编写SQL查询并执行,例如从`employees`表中选取所有记录。此外,还讨论了处理查询结果、格式化输出和异常处理的方法。最后,提到了参数化查询和事务处理以增强安全性及确保数据一致性。
Python执行PostgreSQL数据库查询语句,并打印查询结果
|
4月前
|
Java 关系型数据库 API
使用Spring Boot和PostgreSQL构建高级查询
使用Spring Boot和PostgreSQL构建高级查询
|
5月前
|
SQL 关系型数据库 数据库
Python查询PostgreSQL数据库
木头左教你如何用Python连接PostgreSQL数据库:安装`psycopg2`库,建立连接,执行SQL脚本如创建表、插入数据,同时掌握错误处理和事务管理。别忘了性能优化,利用索引、批量操作提升效率。下期更精彩!💡 csvfile
Python查询PostgreSQL数据库
|
6月前
|
SQL 人工智能 Oracle
PostgreSQL 递归查询(含层级和结构)
PostgreSQL 递归查询(含层级和结构)
|
存储 NoSQL 关系型数据库
深入探索地理空间查询:如何优雅地在MySQL、PostgreSQL及Redis中实现精准的地理数据存储与检索技巧
深入探索地理空间查询:如何优雅地在MySQL、PostgreSQL及Redis中实现精准的地理数据存储与检索技巧
2087 0
下一篇
无影云桌面