Hadoop MapReduce编程 API入门系列之wordcount版本2(六)

简介:

 

 

 

代码

复制代码
 1 package zhouls.bigdata.myMapReduce.wordcount4;
 2 
 3 import java.io.IOException;
 4 
 5 import org.apache.hadoop.io.IntWritable;
 6 import org.apache.hadoop.io.LongWritable;
 7 import org.apache.hadoop.io.Text;
 8 import org.apache.hadoop.mapreduce.Mapper;
 9 import org.apache.hadoop.util.StringUtils;
10 
11 public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
12 
13 //该方法循环调用,从文件的split中读取每行调用一次,把该行所在的下标为key,该行的内容为value
14 protected void map(LongWritable key, Text value,
15 Context context)
16 throws IOException, InterruptedException {
17 String[] words = StringUtils.split(value.toString(), ' ');
18 for(String w :words){
19 context.write(new Text(w), new IntWritable(1));
20 }
21 }
22 }
复制代码

 

 

复制代码
 1 package zhouls.bigdata.myMapReduce.wordcount4;
 2 
 3 import java.io.IOException;
 4 
 5 import org.apache.hadoop.io.IntWritable;
 6 import org.apache.hadoop.io.Text;
 7 import org.apache.hadoop.mapreduce.Reducer;
 8 
 9 public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
10 
11 //每组调用一次,这一组数据特点:key相同,value可能有多个。
12 protected void reduce(Text arg0, Iterable<IntWritable> arg1,
13 Context arg2)
14 throws IOException, InterruptedException {
15 int sum =0;
16 for(IntWritable i: arg1){
17 sum=sum+i.get();
18 }
19 arg2.write(arg0, new IntWritable(sum));
20 }
21 }
复制代码

 

 

 

 

 

 

 

 

 

//System.setProperty("HADOOP_USER_NAME", "root");
//
//1、MR执行环境有两种:本地测试环境,服务器环境
//
//本地测试环境(windows):(便于调试)
// 在windows的hadoop目录bin目录有一个winutils.exe
// 1、在windows下配置hadoop的环境变量
// 2、拷贝debug工具(winutils.exe)到HADOOP_HOME/bin
// 3、修改hadoop的源码 ,注意:确保项目的lib需要真实安装的jdk的lib
//
// 4、MR调用的代码需要改变:
// a、src不能有服务器的hadoop配置文件(因为,本地是调试,去服务器环境集群那边的)
// b、再调用是使用:
// Configuration config = new Configuration();
// config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
// config.set("yarn.resourcemanager.hostname", "HadoopMaster");

//服务器环境:(不便于调试),有两种方式。
//首先需要在src下放置服务器上的hadoop配置文件(都要这一步)
//1、在本地直接调用,执行过程在服务器上(真正企业运行环境)
// a、把MR程序打包(jar),直接放到本地
// b、修改hadoop的源码 ,注意:确保项目的lib需要真实安装的jdk的lib
// c、增加一个属性:
// config.set("mapred.jar", "C:\\Users\\Administrator\\Desktop\\wc.jar");
// d、本地执行main方法,servlet调用MR。
//
//
//2、直接在服务器上,使用命令的方式调用,执行过程也在服务器上
// a、把MR程序打包(jar),传送到服务器上
// b、通过: hadoop jar jar路径 类的全限定名
//
//
//
//
//a,1 b,1
//a,3 c,3
//a,2 d,2
//
//
//a,3 c,3
//a,2 d,2
//a,1 b,1
//

 

复制代码
 1 package zhouls.bigdata.myMapReduce.wordcount4;
 2 
 3 
 4 import org.apache.hadoop.conf.Configuration;
 5 import org.apache.hadoop.fs.FileSystem;
 6 import org.apache.hadoop.fs.Path;
 7 import org.apache.hadoop.io.IntWritable;
 8 import org.apache.hadoop.io.Text;
 9 import org.apache.hadoop.mapreduce.Job;
10 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
11 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
12 
13 public class RunJob {
14 
15 public static void main(String[] args) {
16 Configuration config =new Configuration();
17 config.set("fs.defaultFS", "hdfs://HadoopMaster:9000");
18 config.set("yarn.resourcemanager.hostname", "HadoopMaster");
19 //    config.set("mapred.jar", "C:\\Users\\Administrator\\Desktop\\wc.jar");//先打包好wc.jar
20 try {
21 FileSystem fs =FileSystem.get(config);
22 
23 Job job =Job.getInstance(config);
24 job.setJarByClass(RunJob.class);
25 
26 job.setJobName("wc");
27 
28 job.setMapperClass(WordCountMapper.class);
29 job.setReducerClass(WordCountReducer.class);
30 
31 job.setMapOutputKeyClass(Text.class);
32 job.setMapOutputValueClass(IntWritable.class);
33 
34 FileInputFormat.addInputPath(job, new Path("/usr/input/wc/wc.txt"));//新建好输入路径,且数据源
35 
36 Path outpath =new Path("/usr/output/wc");
37 if(fs.exists(outpath)){
38 fs.delete(outpath, true);
39 }
40 FileOutputFormat.setOutputPath(job, outpath);
41 
42 boolean f= job.waitForCompletion(true);
43 if(f){
44 System.out.println("job任务执行成功");
45 }
46 } catch (Exception e) {
47 e.printStackTrace();
48 }
49 }
50 }



本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6163585.html,如需转载请自行联系原作者
相关文章
|
7月前
|
JSON 安全 API
电商API入门问答:开发者必知的10个基础问题
本文详解电商API的10个基础知识,涵盖定义、用途、认证、安全等内容,帮助开发者快速入门并提升开发效率。
202 0
|
7月前
|
缓存 监控 安全
电商API集成入门:从零开始搭建高效接口
在数字化电商时代,API集成成为企业提升效率、实现系统互联的关键。本文从零开始,逐步讲解如何搭建高效、可靠的电商API接口,适合初学者学习。内容涵盖API基础、认证安全、请求处理、性能优化等核心步骤,并提供Python代码示例与数学公式辅助理解。通过实践,读者可掌握构建优质电商API的技巧,提升用户体验与系统性能。
314 0
|
4月前
|
Cloud Native 算法 API
Python API接口实战指南:从入门到精通
🌟蒋星熠Jaxonic,技术宇宙的星际旅人。深耕API开发,以Python为舟,探索RESTful、GraphQL等接口奥秘。擅长requests、aiohttp实战,专注性能优化与架构设计,用代码连接万物,谱写极客诗篇。
Python API接口实战指南:从入门到精通
|
10月前
|
JSON 算法 API
一文掌握 1688 商品详情 API 接口:从入门到实战
1688是国内领先的综合电商批发平台,提供海量商品资源。其商品详情API助力开发者与企业获取商品的详细信息(如属性、价格、库存等),广泛应用于电商数据分析、比价系统及采购场景。API支持GET/POST请求,需传入通用参数(app_key、timestamp等)与业务参数(如product_id)。返回JSON格式数据,包含商品标题、价格、图片链接等详情,提升业务效率与决策精准度。
|
10月前
|
搜索推荐 API 开发者
京东商品列表 API 接口全解析:从入门到精通
京东商品列表API是京东开放平台为开发者提供的核心数据接口,支持批量获取商品基础信息、价格、库存状态等多维度数据。它具备数据丰富性、灵活筛选与分页查询、稳定高效等特点,可满足市场分析、选品优化、比价工具及推荐系统开发等需求,为电商业务创新提供坚实支撑。通过标准化通道,助力第三方高效、合法地利用京东海量商品数据。
|
9月前
|
JSON API 开发工具
电商API接口入门指南
本文介绍了API的基础知识及其在电商领域的实际应用。首先,阐释了API的概念、运作机制及参数与返回值的作用,帮助读者理解如何通过API实现软件间的交互。接着,以获取电商商品列表为例,详细讲解了从选择平台、引入SDK到编写代码调用API的全流程。示例代码采用Python语言,利用requests库发送请求并解析JSON数据,为开发者提供了清晰的实践指导。
|
7月前
|
存储 机器学习/深度学习 API
Android API Level 到底是什么?和安卓什么关系?应用发布如何知道自己的版本?优雅草卓伊凡
Android API Level 到底是什么?和安卓什么关系?应用发布如何知道自己的版本?优雅草卓伊凡
1073 31
Android API Level 到底是什么?和安卓什么关系?应用发布如何知道自己的版本?优雅草卓伊凡
|
7月前
|
存储 安全 API
亚马逊SP-API入门:海外电商接口调用与国内平台的差异化
亚马逊 SP-API 与国内电商 API 在技术架构、安全机制及开发流程上差异显著。本文对比京东、淘宝等平台,分析接口设计、地域适配、权限管理等核心差异,并结合实战经验提供开发建议,助力开发者高效接入 SP-API,实现全球电商业务拓展。
|
9月前
|
数据挖掘 API 开发者
京东商品详情 API 接口全攻略:从入门到精通
京东商品详情API接口是京东开放平台为开发者提供的服务,用于获取商品详细信息。通过调用接口,开发者可获得商品属性、价格、库存、促销信息等数据,适用于电商应用、价格比较工具及数据分析平台等场景。支持GET/POST请求方式,参数包括API版本、密钥等。示例代码展示了如何使用Python的requests库调用该接口,并获取JSON格式的返回数据,包含商品基本信息、价格、库存和用户评价等内容。
373 16
|
开发框架 .NET API
RESTful API 设计与实现:C# 开发者的一分钟入门
【10月更文挑战第5天】本文从零开始,介绍了如何使用 C# 和 ASP.NET Core 设计并实现一个简单的 RESTful API。首先解释了 RESTful API 的概念及其核心原则,然后详细说明了设计 RESTful API 的关键步骤,包括资源识别、URI 设计、HTTP 方法选择、状态码使用和错误处理。最后,通过一个用户管理 API 的示例,演示了如何创建项目、定义模型、实现控制器及运行测试,帮助读者掌握 RESTful API 的开发技巧。
674 7

热门文章

最新文章