Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)

简介:

Spark MLlib架构解析

  • MLlib的底层基础解析
  • MLlib的算法库分析
    •   分类算法 
    •   回归算法
    •       聚类算法
    •       协同过滤
  • MLlib的实用程序分析

 

 

 

从架构图可以看出MLlib主要包含三个部分:

  • 底层基础:包括Spark的运行库、矩阵库和向量库;
  • 算法库:包含广义线性模型、推荐系统、聚类、决策树和评估的算法;
  • 实用程序:包括测试数据的生成、外部数据的读入等功能。

 

 

 

 

MLlib的底层基础解析

  底层基础部分主要包括向量接口和矩阵接口,这两种接口都会使用Scala语言基于Netlib和BLAS/LAPACK开发的线性代数库Breeze。

  MLlib支持本地的密集向量和稀疏向量,并且支持标量向量。

  MLlib同时支持本地矩阵和分布式矩阵,支持的分布式矩阵分为RowMatrix、IndexedRowMatrix、CoordinateMatrix等。

  关于密集型和稀疏型的向量Vector的示例如下所示。

      

                

 

 

 

   疏矩阵在含有大量非零元素的向量Vector计算中会节省大量的空间并大幅度提高计算速度,如下图所示。

             

 

 

   标量LabledPoint在实际中也被大量使用,例如判断邮件是否为垃圾邮件时就可以使用类似于以下的代码:

              

 

 

 

  可以把表示为1.0的判断为正常邮件,而表示为0.0则作为垃圾邮件来看待。

  对于矩阵Matrix而言,本地模式的矩阵如下所示。

        

 

 

 

 

   分布式矩阵如下所示。

        

 

 

   RowMatrix直接通过RDD[Vector]来定义并可以用来统计平均数、方差、协同方差等:

       

      

 

 

 

   而IndexedRowMatrix是带有索引的Matrix,但其可以通过toRowMatrix方法来转换为RowMatrix,从而利用其统计功能,代码示例如下所示。

      

 

 

 

   CoordinateMatrix常用于稀疏性比较高的计算中,是由RDD[MatrixEntry]来构建的,MatrixEntry是一个Tuple类型的元素,其中包含行、列和元素值,代码示例如下所示:

          

 

 

 

 

MLlib的算法库分析

  下图是MLlib算法库的核心内容。

        

 

   在这里我们分析一些Spark中常用的算法:

 

   

 

 

  1) 分类算法

  分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类。分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测、精确营销、客户获取、个性偏好等。MLlib 目前支持分类算法有:逻辑回归、支持向量机、朴素贝叶斯和决策树。

  案例:导入训练数据集,然后在训练集上执行训练算法,最后在所得模型上进行预测并计算训练误差。

复制代码
import org.apache.spark.SparkContext
import org.apache.spark.mllib.classification.SVMWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
 
// 加载和解析数据文件
val data = sc.textFile("mllib/data/sample_svm_data.txt")
val parsedData = data.map { line =>
  val parts = line.split(' ')
  LabeledPoint(parts(0).toDouble, parts.tail.map(x => x.toDouble).toArray)
}
 
// 设置迭代次数并进行进行训练
val numIterations = 20
val model = SVMWithSGD.train(parsedData, numIterations)
 
// 统计分类错误的样本比例
val labelAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count
println("Training Error = " + trainErr)
复制代码

 

 

 

   

  2) 回归算法

  回归算法属于监督式学习,每个个体都有一个与之相关联的实数标签,并且我们希望在给出用于表示这些实体的数值特征后,所预测出的标签值可以尽可能接近实际值。MLlib 目前支持回归算法有:线性回归、岭回归、Lasso和决策树。

  案例:导入训练数据集,将其解析为带标签点的RDD,使用 LinearRegressionWithSGD 算法建立一个简单的线性模型来预测标签的值,最后计算均方差来评估预测值与实际值的吻合度。

复制代码
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
 
// 加载和解析数据文件
val data = sc.textFile("mllib/data/ridge-data/lpsa.data")
val parsedData = data.map { line =>
  val parts = line.split(',')
  LabeledPoint(parts(0).toDouble, parts(1).split(' ').map(x => x.toDouble).toArray)
}
 
//设置迭代次数并进行训练
val numIterations = 20
val model = LinearRegressionWithSGD.train(parsedData, numIterations)
 
// 统计回归错误的样本比例
val valuesAndPreds = parsedData.map { point =>
val prediction = model.predict(point.features)
(point.label, prediction)
}
val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count
println("training Mean Squared Error = " + MSE)
复制代码

 

 

 

  

  3)  聚类算法

  聚类算法属于非监督式学习,通常被用于探索性的分析,是根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似,常见的典型应用场景有客户细分、客户研究、市场细分、价值评估。MLlib 目前支持广泛使用的KMmeans聚类算法。

  案例:导入训练数据集,使用 KMeans 对象来将数据聚类到两个类簇当中,所需的类簇个数会被传递到算法中,然后计算集内均方差总和(WSSSE),可以通过增加类簇的个数 k 来减小误差。 实际上,最优的类簇数通常是 1,因为这一点通常是WSSSE图中的 “低谷点”。

复制代码
import org.apache.spark.mllib.clustering.KMeans
 
// 加载和解析数据文件
val data = sc.textFile("kmeans_data.txt")
val parsedData = data.map( _.split(' ').map(_.toDouble))
// 设置迭代次数、类簇的个数
val numIterations = 20
val numClusters = 2
 
// 进行训练
val clusters = KMeans.train(parsedData, numClusters, numIterations)
 
// 统计聚类错误的样本比例
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
复制代码

 

 

 

 

  4) 协同过滤

  协同过滤常被应用于推荐系统,这些技术旨在补充用户-商品关联矩阵中所缺失的部分。MLlib当前支持基于模型的协同过滤,其中用户和商品通过一小组隐语义因子进行表达,并且这些因子也用于预测缺失的元素。

  案例:导入训练数据集,数据每一行由一个用户、一个商品和相应的评分组成。假设评分是显性的,使用默认的ALS.train()方法,通过计算预测出的评分的均方差来评估这个推荐模型。

复制代码
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating
 
// 加载和解析数据文件
val data = sc.textFile("mllib/data/als/test.data")
val ratings = data.map(_.split(',') match {
case Array(user, item, rate) => Rating(user.toInt, item.toInt, rate.toDouble)
})
 
// 设置迭代次数
val numIterations = 20
val model = ALS.train(ratings, 1, 20, 0.01)
 
// 对推荐模型进行评分
val usersProducts = ratings.map{ case Rating(user, product, rate) => (user, product)}
val predictions = model.predict(usersProducts).map{
case Rating(user, product, rate) => ((user, product), rate)
}
val ratesAndPreds = ratings.map{
case Rating(user, product, rate) => ((user, product), rate)
}.join(predictions)
val MSE = ratesAndPreds.map{
case ((user, product), (r1, r2)) => math.pow((r1- r2), 2)
}.reduce(_ + _)/ratesAndPreds.count
println("Mean Squared Error = " + MSE)
复制代码

 

 

 

 

 

 

MLlib的实用程序分析

  实用程序部分包括数据的验证器、Label的二元和多元的分析器、多种数据生成器、数据加载器。

        


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/6785144.html,如需转载请自行联系原作者

相关文章
|
22天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
28天前
|
机器学习/深度学习 分布式计算 算法
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)
117 0
|
8月前
|
存储 算法 安全
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
972 14
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
1月前
|
机器学习/深度学习 数据采集 算法
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
【风光场景生成】基于改进ISODATA的负荷曲线聚类算法(Matlab代码实现)
|
2月前
|
人工智能 算法 安全
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
|
2月前
|
算法 数据可视化 数据挖掘
基于AOA算术优化的KNN数据聚类算法matlab仿真
本程序基于AOA算术优化算法优化KNN聚类,使用Matlab 2022A编写。通过AOA搜索最优特征子集,提升KNN聚类精度,并对比不同特征数量下的聚类效果。包含完整仿真流程与可视化结果展示。
|
3月前
|
机器学习/深度学习 人工智能 算法
AP聚类算法实现三维数据点分类
AP聚类算法实现三维数据点分类
142 0
|
7月前
|
监控 算法 安全
基于 C# 的内网行为管理软件入侵检测算法解析
当下数字化办公环境中,内网行为管理软件已成为企业维护网络安全、提高办公效率的关键工具。它宛如一位恪尽职守的网络守护者,持续监控内网中的各类活动,以确保数据安全及网络稳定。在其诸多功能实现的背后,先进的数据结构与算法发挥着至关重要的作用。本文将深入探究一种应用于内网行为管理软件的 C# 算法 —— 基于二叉搜索树的入侵检测算法,并借助具体代码例程予以解析。
125 4
|
7月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~

推荐镜像

更多
  • DNS