Deep learning From Image to Sequence

简介:

本文笔记旨在概括地讲deep learning的经典应用。内容太大,分三块。

---------------------------------------------------------------------------------------------

                                                     Content


1. 回想 deep learning在图像上的经典应用 

    1.1 Autoencoder

    1.2 MLP

    1.3 CNN<具体的见上一篇CNN>

2. deep learning处理语音等时序信号

    2.1 对什么时序信号解决什么问题

    2.2 准备知识

        2.2.1 Hidden Markov Model(HMM)

        2.2.2 GMM-HMM for Speech Recognition

        2.2.3 Restricted Boltzmann Machine(RBM)

3.  DBN 和 RNN 在语音上的应用 

    3.1 DBN

        3.1.1 DBN架构

        3.1.2 DBN-DNN for Speech Recognition

    3.2 RNN

        3.2.1 RNN种类

        3.2.2 RNN-RBM for Sequential signal Prediction


---------------------------------------------------------------------------------------------


1. 回想 deep learning处理图像等非时序信号 <具体的见上一篇CNN>

----------------------------------------------

1.1 AutoEncoder(unsupervised)


扩展:Stack AutoEncoder(能够变成supervised),见Andrew Ng的UFLDL教程。我就不贴图了



----------------------------------------------

1.2 MLP

MLP(ANN)是最naive的神网分类器。一个hidden层,连两端nonlinear function,output输出为f(x),softmax做分类。



----------------------------------------------

1.3 Convolutional Neural Network

特点:1. 非全连接,2、共享权重

做法:1. 卷积 2. 降採样(pooling)

具体见上一篇CNN









---------------------------------------------------------------------------------------------

2. deep learning处理语音等时序信号

2.1 对什么时序信号解决什么问题:

handwriting recognition
speech recognition
music composition
protein analysis
stock market prediction
...



2.2 准备知识:

----------------------------------------------

       2.2.1 Hidden Markov Model(HMM) - 带unobserved(这就是所谓hidden)states的随机过程。表示输入语音信号和hidden state(因素)的模型:


<figure from wiki>

训练HMM模型:给定一个时序y1...yT, 用MLE(typically EM implemented,具体见这篇第三部分training) 预计參数;



----------------------------------------------

            2.2.2 GMM-HMM for Speech Recognition (较大。单独放在一篇blog里了)


----------------------------------------------

            2.2.3 Restricted Boltzmann Machine


           讲RBM之前要先讲一下生成模型……<How to build a single layer of feature detector>

           大体分为两类——directed model & undirected model:

             1.directed model (e.g. GMM 从离散分布求latent状态)

                    依据先验分布选择latent variable的状态

                    给定latent states,依据条件分布求observable variables的状态

             2.undirected model

                    仅仅用參数W,通过能量函数定义v(visible)和h(hidden latent variables)的联合概率



             依据”explaining away”,假设latent和visible变量有着非线性关系。directed model非常难判断出latent variable的状态;但在undirected model中,仅仅要latent变量间没有变项链就能够轻松判断。

PS: explaining away是什么?

state的先验相互独立,后验也相互独立,



以下再讲RBM。


           RBM 是马尔科夫随机场(MRF)的一种。不同之处:

           1. RBM是一个双向连接图(bipartite connectivity graph)

           2. RBM在不同unit之间不共享权重

           3. 有一部分变量是unobserved


RBM对能量函数E(v,h)的定义:






RBM的參数构成:W(weight), bias_h, bias_v

已知联合分布P(v,h) 。 可通过Gibbs採样边缘分布分别得到h,v,依据Gradient of NLL进行梯度下降学习到參数。

RBM的训练目标是:最大化p(v=visible)。

visible=真实的visible数据)

RBM实际训练过程中,对每一个training_batch:

       contrastive divergence 採样k次(gibbs CD-k)

       依据cost function进行update : , 即 cost = T.mean(self.free_energy(self.input)) - T.mean(self.free_energy(chain_end))




上面讲的RBM都是v,h = 0/1的。那怎么处理real-value的呢?

ANS:用Gaussian-Bernoulli RBM (GRBM)。

对上面经典RBM修改不大。仅仅须要改energy function & conditional prob:










3.  DBN 和 RNN 在语音上的应用 

3.1 DBN

        3.1.1 DBN架构



流程:

1. pre-train

从左到右来看,因为输入为real-value,所以第一层为GRBM,训练W1

GRBM训练出来的hidden给下一个RBM做input,训练W2

这个RBM训练出来的hidden再传给下一个RBM做input。训练W3

……(反复)


2. 能够直接把这几层pre-train好的W叠起来,双向weight箭头全改成top-down的。成了一个DBN生成模型


3. 加分类器

能够最后在这个pre-trained网络头部加一个softmax分类器,当中每一个节点表示HMM中一个状态,去做有监督的fine-tuning.。





        3.1.2 DBN-DNN for Speech Recognition

假设你细致看过上一篇GMM-HMM for Speech Recognition就会发现,这个模型和GMM-HMM仅仅差在GMM

即。DNN-HMM用DNN(undirected model)取代了GMM(directed model),这种优点是能够解决h,v之间非线性关系映射。


Fig1. GMM-HMM


Fig2. DNN-HMM



    3.2 RNN

        3.2.1 RNN种类

常见的:

1.Fully Recurrent Network

2.Hopfield Network

3.Elman Network (Simple Recurrent networks)

4.Long short term memory network


fig. LSTM



        3.2.2 RNN-RBM for Sequential signal Prediction

见一个RNN样例,RNNRBM(RNN-RBM for music composition 网络架构及程序解读








Reference: 

为了大家看的方便,我推荐从简了。

抄了太多图,不贴出处了大牛们见谅。。不然一堆推荐无从下手滴样纸

Deep Learning 在语音上的应用DNN经典文章:

1. Hinton, Li Deng, Dong Yu大作:Deep Neural Networks for Acoustic Modeling in Speech Recognition

2. Andrew Ng, NIPS 09, Unsupervised feature learning for audio classification using convolutional deep belief networks


Deep Learning 在语音上的应用RNN经典文章:

1. Bengio ICML 2012. RNN+RBM paper有实现 (下一篇细讲)

2. Schmidhuber JMLR 2002 paper讲LSTM经典

3. The Use of Recurrent Neural Networks in Continuous Speech Recognition, 老文章讲RNN比較基础,可是确实经典









本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5093116.html,如需转载请自行联系原作者

相关文章
|
3月前
|
机器学习/深度学习 编解码 算法
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
论文提出了基于深度学习的面部欺骗检测技术,使用LRF-ELM和CNN两种模型,在NUAA和CASIA数据库上进行实验,发现LRF-ELM在检测活体面部方面更为准确。
40 1
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
|
机器学习/深度学习 算法 决策智能
【5分钟 Paper】Deep Reinforcement Learning with Double Q-learning
【5分钟 Paper】Deep Reinforcement Learning with Double Q-learning
120 0
|
机器学习/深度学习 数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
63 1
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
算法 Go
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
104 0
|
数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
140 0
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
93 0
|
机器学习/深度学习 资源调度 算法框架/工具
翻译:Deep Residual Learning for Image Recognition
翻译:Deep Residual Learning for Image Recognition
143 0
|
机器学习/深度学习 PyTorch 算法框架/工具
Batch Normlization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》论文详细解读
Batch Normlization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》论文详细解读
133 0
Batch Normlization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》论文详细解读
|
机器学习/深度学习 编解码 人工智能
使用《Deep Image Prior》来做图像复原
图像复原是指从退化的图像中恢复未知的真实图像。
944 0
|
决策智能
论文笔记之:Collaborative Deep Reinforcement Learning for Joint Object Search
Collaborative Deep Reinforcement Learning for Joint Object Search   CVPR 2017 Motivation:   传统的 bottom-up object region proposals 的方法,由于提取了较多的 proposal,导致后续计算必须依赖于抢的计算能力,如 GPU 等。