宋牧春: Linux设备树文件结构与解析深度分析(2) 【转】

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:

转自:https://mp.weixin.qq.com/s/WPZSElF3OQPMGqdoldm07A

 

 

 

 

 

 

作者简介

 

宋牧春,linux内核爱好者,喜欢阅读各种开源代码(uboot、linux、ucos、rt-thread等),对于优秀的代码框架及其痴迷。现就职于一家手机研发公司,任职Android BSP开发工程师。

 

正文开始

 

前情提要:

宋牧春: Linux设备树文件结构与解析深度分析(1)

征稿和征稿奖励名单:

Linuxer-"Linux开发者自己的媒体"第二月稿件录取和赠书名单

Linuxer-"Linux开发者自己的媒体"首月稿件录取和赠书名单


 

6. platform_device和device_node绑定

经过以上解析,DeviceTree的数据已经全部解析出具体的struct device_node和struct property结构体,下面需要和具体的device进行绑定。首先讲解platform_device和device_node的绑定过程。在arch/arm/kernel/setup.c文件中,customize_machine()函数负责填充struct platform_device结构体。函数调用过程如图8所示。

 

  图8 platform_device生成流程图

代码分析如下:

 

const struct of_device_id  of_default_bus_match_table[] = {

    {  .compatible = "simple-bus", },

    {  .compatible = "simple-mfd", },

#ifdef CONFIG_ARM_AMBA

    {  .compatible = "arm,amba-bus", },

#endif /* CONFIG_ARM_AMBA */

    {}  /* Empty terminated list */

};

 

int of_platform_populate(struct  device_node *root,

           const  struct of_device_id *matches,

           const  struct of_dev_auxdata *lookup,

           struct  device *parent)

{

    struct  device_node *child;

    int  rc = 0;

 

    /*  获取根节点 */

    root  = root ? of_node_get(root) : of_find_node_by_path("/");

    if  (!root)

       return  -EINVAL;

 

    /*  为根节点下面的每一个节点创建platform_device结构体 */

    for_each_child_of_node(root,  child) {

       rc  = of_platform_bus_create(child, matches, lookup, parent, true);

       if  (rc) {

           of_node_put(child);

           break;

       }

    }

    /*  更新device_node flag标志位 */

    of_node_set_flag(root,  OF_POPULATED_BUS);

 

    of_node_put(root);

    return  rc;

}

 

static int of_platform_bus_create(struct  device_node *bus,

                const struct of_device_id *matches,

                const struct of_dev_auxdata *lookup,

                struct device *parent, bool strict)

{

    const  struct of_dev_auxdata *auxdata;

    struct  device_node *child;

    struct  platform_device *dev;

    const  char *bus_id = NULL;

    void  *platform_data = NULL;

    int  rc = 0;

 

    /*  只有包含"compatible"属性的node节点才会生成相应的platform_device结构体 */

    /*  Make sure it has a compatible property */

    if  (strict && (!of_get_property(bus, "compatible", NULL))) {

       return  0;

    }

    /*  省略部分代码 */

    /*  

     * 针对节点下面得到status = "ok" 或者status = "okay"或者不存在status属性的

     * 节点分配内存并填充platform_device结构体

     */

    dev  = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);

    if  (!dev || !of_match_node(matches, bus))

       return  0;

 

    /*  递归调用节点解析函数,为子节点继续生成platform_device结构体,前提是父节点

     * “compatible” = “simple-bus”,也就是匹配of_default_bus_match_table结构体中的数据

     */

    for_each_child_of_node(bus,  child) {

       rc  = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);

       if  (rc) {

           of_node_put(child);

           break;

       }

    }

    of_node_set_flag(bus,  OF_POPULATED_BUS);

    return  rc;

}

 

总的来说,当of_platform_populate()函数执行完毕,kernel就为DTB中所有包含compatible属性名的第一级node创建platform_device结构体,并向平台设备总线注册设备信息。如果第一级node的compatible属性值等于“simple-bus”、“simple-mfd”或者"arm,amba-bus"的话,kernel会继续为当前node的第二级包含compatible属性的node创建platform_device结构体,并注册设备。Linux系统下的设备大多都是挂载在平台总线下的,因此在平台总线被注册后,会根据of_root节点的树结构,去寻找该总线的子节点,所有的子节点将被作为设备注册到该总线上。

7. i2c_client和device_node绑定

经过customize_machine()函数的初始化,DTB已经转换成platform_device结构体,这其中就包含i2c adapter设备,不同的SoC需要通过平台设备总线的方式自己实现i2c adapter设备的驱动。例如:i2c_adapter驱动的probe函数中会调用i2c_add_numbered_adapter()注册adapter驱动,函数流执行如图9所示。

9 i2c_client绑定流程

在of_i2c_register_devices()函数内部便利i2c节点下面的每一个子节点,并为子节点(status = “disable”的除外)创建i2c_client结构体,并与子节点的device_node挂接。其中i2c_client的填充是在i2c_new_device()中进行的,最后device_register()。在构建i2c_client的时候,会对node下面的compatible属性名称的厂商名字去除作为i2c_client的name。例如:compatible = “maxim,ds1338”,则i2c_client->name = “ds1338”。

8. Device_Tree与sysfs

kernel启动流程为start_kernel()→rest_init()→kernel_thread():kernel_init()→do_basic_setup()→driver_init()→of_core_init(),在of_core_init()函数中在sys/firmware/devicetree/base目录下面为设备树展开成sysfs的目录和二进制属性文件,所有的node节点就是一个目录,所有的property属性就是一个二进制属性文件。




本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/sky-heaven/p/8177032.html,如需转载请自行联系原作者

相关文章
|
2月前
|
Linux 网络安全 数据安全/隐私保护
Linux 超级强大的十六进制 dump 工具:XXD 命令,我教你应该如何使用!
在 Linux 系统中,xxd 命令是一个强大的十六进制 dump 工具,可以将文件或数据以十六进制和 ASCII 字符形式显示,帮助用户深入了解和分析数据。本文详细介绍了 xxd 命令的基本用法、高级功能及实际应用案例,包括查看文件内容、指定输出格式、写入文件、数据比较、数据提取、数据转换和数据加密解密等。通过掌握这些技巧,用户可以更高效地处理各种数据问题。
133 8
|
2月前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
534 6
|
2月前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
102 3
|
2月前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
84 2
|
28天前
|
Linux Shell
Linux 10 个“who”命令示例
Linux 10 个“who”命令示例
53 14
Linux 10 个“who”命令示例
|
7天前
|
Linux
linux查看目录下的文件夹命令,find查找某个目录,但是不包括这个目录本身?
通过本文的介绍,您应该对如何在 Linux 系统中查看目录下的文件夹以及使用 `find` 命令查找特定目录内容并排除该目录本身有了清晰的理解。掌握这些命令和技巧,可以大大提高日常文件管理和查找操作的效率。 在实际应用中,灵活使用这些命令和参数,可以帮助您快速定位和管理文件和目录,满足各种复杂的文件系统操作需求。
30 8
|
16天前
|
Ubuntu Linux
Linux 各发行版安装 ping 命令指南
如何在不同 Linux 发行版(Ubuntu/Debian、CentOS/RHEL/Fedora、Arch Linux、openSUSE、Alpine Linux)上安装 `ping` 命令,详细列出各发行版的安装步骤和验证方法,帮助系统管理员和网络工程师快速排查网络问题。
103 20
|
17天前
|
网络协议 Linux 应用服务中间件
kali的常用命令汇总Linux
kali的常用命令汇总linux
44 7
|
2月前
|
Linux 数据库
Linux中第一次使用locate命令报错?????
在Linux CentOS7系统中,使用`locate`命令时出现“command not found”错误,原因是缺少`mlocate`包。解决方法是通过`yum install mlocate -y`或`apt-get install mlocate`安装该包,并执行`updatedb`更新数据库以解决后续的“can not stat”错误。
36 9
|
2月前
|
监控 网络协议 Linux
Linux netstat 命令详解
Linux netstat 命令详解