Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2:
这道题我 WA 3次 PE 1次 ==
7 1 6
思路:最大连续子序列:状态方程:sum[i]=max(sum[i-1]+a[i],a[i]);最后从头到尾扫一边
感言:这是一道一粗心就错的题目,假设你还找不到自己代码的错误。那么试一下下面測试数据:
4 0 0 5 0 5 1 3
4 0 0 -1 0 0 1 1
5 -7 -8 -9 -2 -3 -2 4 4
5 -1 -2 5 -2 8 11 3 5
AC代码:
#include<stdio.h> int a[100005]; int main() { int maxx,sum,i,cnt,flag,tot,t,ms,me,T; scanf("%d",&t); cnt=1; T=t; while(t--) { int n; scanf("%d",&n); for(i=0;i<n;i++) scanf("%d",&a[i]); sum=0; maxx=a[0]; flag=tot=ms=0; me=1; for(i=0;i<n;i++) { if(sum<0){ sum=a[i]; flag=i; tot=i+1; } else{ tot++; sum+=a[i]; } if(sum>maxx){ ms=flag; me=tot; maxx=sum; } } printf("Case %d:\n",cnt++); printf("%d %d %d\n",maxx,ms+1,me); if(cnt<=T) printf("\n"); } return 0; }
这道题我 WA 3次 PE 1次 ==
本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5267815.html,如需转载请自行联系原作者