OPENCV用户手册之图像处理部分(之一):梯度、边缘与角点(中文翻译)

简介:

2004年09月03日 09:23:00

下面是OPENCV用户手册之图像处理部分:梯度、边缘与角点(中文翻译),有错误欢迎指正,原文在:

http://www.assuredigit.com/incoming/sourcecode/opencv/chinese_docs/ref/opencvref_cv.htm

注意:
本章描述图像处理和分析的一些函数。大多数函数是针对二维数组的。所以我们用数组来描述“图像”,而图像不必是 IplImage,还可以是 CvMat's 或 CvMatND。


梯度、边缘和角点

翻译:HUNNISH, 阿须数码


Sobel

使用扩展 Sobel 算子计算一阶、二阶、三阶或混合图像差分

void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3 );
src
输入图像.
dst
输出图像.
xorder
x? 方向上的差分阶数
yorder
y? 方向上的差分阶数
aperture_size
扩展 Sobel 核的大小,必须是 1, 3, 5 或 7。 除了尺寸为 1, 其它情况下, aperture_size ×aperture_size 可分离内核将用来计算差分。对 aperture_size=1的情况, 使用 3x1 或 1x3 内核 (不进行高斯平滑操作)。有一个特殊变量? CV_SCHARR (=-1),对应 3x3 Scharr 滤波器,可以给出比 3x3 Sobel 滤波更精确的结果。Scharr 滤波器系数是:
| -3 0  3||-10 0 10|| -3 0  3|
对 x-方向 以及转置矩阵对 y-方向。

函数 cvSobel 通过对图像用相应的内核进行卷积操作来计算图像差分:

dst(x,y) = dxorder+yodersrc/dxxorder"dyyorder |(x,y)

Sobel 算子结合 Gaussian 平滑和微分,以提高计算结果对噪声的抵抗能力。通常情况,函数调用采用如下参数 (xorder=1, yorder=0, aperture_size=3) 或 (xorder=0, yorder=1, aperture_size=3) 来计算一阶 x- 或 y- 方向的图像差分。第一种情况对应:

  |-1  0  1|  |-2  0  2|  |-1  0  1|

核。第二种对应

  |-1 -2 -1|  | 0  0  0|  | 1  2  1|or  | 1  2  1|  | 0  0  0|  |-1 -2 -1|

核,它依赖于图像原点的定义 (origin 来自 IplImage 结构的定义)。不进行图像尺度变换。所以输出图像通常比输入图像大。为防止溢出,当输入图像是 8 位的,要求输出图像是 16 位的。产生的图像可以用函数 cvConvertScale 或 cvConvertScaleAbs 转换为 8 位的。除了 8-比特 图像,函数也接受 32-位 浮点数图像。所有输入和输出图像都必须是单通道,且图像大小或ROI尺寸一致。


Laplace

计算图像的 Laplacian?

void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 );
src
输入图像.
dst
输出图像.
aperture_size
核大小 (与  cvSobel 中定义一样).

函数 cvLaplace 计算输入图像的 Laplacian,方法是对用 sobel 算子计算的二阶 x- 和 y- 差分求和:

dst(x,y) = d2src/dx2 + d2src/dy2

对 aperture_size=1 则给出最快计算结果,相当于对图像采用如下内核做卷积:

|0  1  0||1 -4  1||0  1  0|

类似于 cvSobel 函数,也不作图像的尺度变换,而且支持输入、输出图像类型一致。


Canny

采用 Canny 算法做边缘检测

void cvCanny( const CvArr* image, CvArr* edges, double threshold1,              double threshold2, int aperture_size=3 );
image
输入图像.
edges
输出的边缘图像
threshold1
第一个阈值
threshold2
第二个阈值
aperture_size
Sobel 算子内核大小 (见  cvSobel).

函数 cvCanny 采用 CANNY 算法发现输入图像的边缘而且在输出图像中标识这些边缘。小的阈值 threshold1 用来控制边缘连接,大的阈值用来控制强边缘的初始分割。


PreCornerDetect

计算特征图,用于角点检测

void cvPreCornerDetect( const CvArr* image, CvArr* corners, int aperture_size=3 );
image
输入图像.
corners
保存角点坐标的数组
aperture_size
Sobel 算子的核大小(见 cvSobel).

函数 cvPreCornerDetect 计算函数 Dx2Dyy+Dy2Dxx - 2DxDyDxy 其中 D? 表示一阶图像差分,D?? 表示二阶图像差分。 角点被认为是函数的局部最大值:

// assuming that the image is 浮点数IplImage* corners = cvCloneImage(image);IplImage* dilated_corners = cvCloneImage(image);IplImage* corner_mask = cvCreateImage( cvGetSize(image), 8, 1 );cvPreCornerDetect( image, corners, 3 );cvDilate( corners, dilated_corners, 0, 1 );cvSubS( corners, dilated_corners, corners );cvCmpS( corners, 0, corner_mask, CV_CMP_GE );cvReleaseImage( &corners );cvReleaseImage( &dilated_corners );

CornerEigenValsAndVecs

计算图像块的特征值和特征向量,用于角点检测

void cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv,                               int block_size, int aperture_size=3 );
image
输入图像.
eigenvv
保存结果的数组。必须比输入图像宽 6 倍。
block_size
邻域大小 (见讨论).
aperture_size
Sobel 算子的核尺寸(见  cvSobel).

对每个象素,函数 cvCornerEigenValsAndVecs 考虑 block_size × block_size 大小的邻域 S(p),然后在邻域上计算差分的相关矩阵:

    | sumS(p)(dI/dx)2   sumS(p)(dI/dx"dI/dy)|M = |                                 |    | sumS(p)(dI/dx"dI/dy)  sumS(p)(dI/dy)2 |

然后它计算矩阵的特征值和特征向量,并且按如下方式(λ1, λ2, x1, y1, x2, y2)存储这些值到输出图像中,其中

λ1, λ2 - M 的特征值,没有排序
(x1, y1) - 特征向量,对 λ1
(x2, y2) - 特征向量,对 λ2


CornerMinEigenVal

计算梯度矩阵的最小特征值,用于角点检测

void cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval, int block_size, int aperture_size=3 );
image
输入图像.
eigenval
保存最小特征值的图像. 与输入图像大小一致
block_size
邻域大小 (见讨论  cvCornerEigenValsAndVecs).
aperture_size
Sobel 算子的核尺寸(见  cvSobel). 当输入图像是浮点数格式时,该参数表示用来计算差分的浮点滤波器的个数.

函数 cvCornerMinEigenVal 与 cvCornerEigenValsAndVecs 类似,但是它仅仅计算和存储每个象素点差分相关矩阵的最小特征值,即前一个函数的 min(λ1, λ2)


FindCornerSubPix

精确角点位置

void cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners,                         int count, CvSize win, CvSize zero_zone,                         CvTermCriteria criteria );
image
输入图像.
corners
输入角点的初始坐标,也存储精确的输出坐标
count
角点数目
win
搜索窗口的一半尺寸。如果  win=(5,5) 那么使用 5*2+1 × 5*2+1 = 11 × 11 大小的搜索窗口
zero_zone
死区的一半尺寸,死区为不对搜索区的中央位置做求和运算的区域。它是用来避免自相关矩阵出现的某些可能的奇异性。当值为 (-1,-1) 表示没有死区。
criteria
求角点的迭代过程的终止条件。即角点位置的确定,要么迭代数大于某个设定值,或者是精确度达到某个设定值。  criteria 可以是最大迭代数目,也可以是精确度

函数 cvFindCornerSubPix 通过迭代来发现具有子象素精度的角点位置,或如图所示的放射鞍点(radial saddle points)。

Sub-pixel accurate corner locator is based on the observation that every vector from the center q to a point p located within a neighborhood of q is orthogonal to the image gradient at p subject to image and measurement noise. Consider the expression_r:

εi=DIpiT"(q-pi)

where DIpi is the image gradient at the one of the points pi in a neighborhood of q. The value of q is to be found such that εi is minimized. A system of equations may be set up with εi' set to zero:

sumi(DIpi"DIpiT)"q - sumi(DIpi"DIpiT"pi) = 0

where the gradients are summed within a neighborhood ("search window") of q. Calling the first gradient term G and the second gradient term b gives:

q=G-1"b

The algorithm sets the center of the neighborhood window at this new center q and then iterates until the center keeps within a set threshold.


GoodFeaturesToTrack

确定图像的强角点

void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, CvArr* temp_image,                            CvPoint2D32f* corners, int* corner_count,                            double quality_level, double min_distance,                            const CvArr* mask=NULL );
image
输入图像,8-位或浮点32-比特,单通道
eig_image
临时浮点32-位图像,大小与输入图像一致
temp_image
另外一个临时图像,格式与尺寸与  eig_image 一致
corners
输出参数,检测到的角点
corner_count
输出参数,检测到的角点数目
quality_level
最大最小特征值的乘法因子。定义可接受图像角点的最小质量因子。
min_distance
限制因子。得到的角点的最小距离。使用 Euclidian 距离
mask
ROI:感兴趣区域。函数在ROI中计算角点,如果 mask 为 NULL,则选择整个图像。

函数 cvGoodFeaturesToTrack 在图像中寻找具有大特征值的角点。该函数,首先用cvCornerMinEigenVal 计算输入图像的每一个象素点的最小特征值,并将结果存储到变量 eig_image 中。然后进行非最大值压缩(仅保留3x3邻域中的局部最大值)。下一步将最小特征值小于quality_level"max(eig_image(x,y)) 排除掉。最后,函数确保所有发现的角点之间具有足够的距离,(最强的角点第一个保留,然后检查新的角点与已有角点之间的距离大于 min_distance )。



Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=93171

本文转自feisky博客园博客,原文链接:http://www.cnblogs.com/feisky/archive/2008/04/11/1586565.html,如需转载请自行联系原作者
相关文章
|
2月前
|
算法 计算机视觉
基于qt的opencv实时图像处理框架FastCvLearn实战
本文介绍了一个基于Qt的OpenCV实时图像处理框架FastCvLearn,通过手撕代码的方式详细讲解了如何实现实时人脸马赛克等功能,并提供了结果展示和基础知识回顾。
104 7
基于qt的opencv实时图像处理框架FastCvLearn实战
|
1月前
|
机器学习/深度学习 算法 计算机视觉
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
【Python篇】Python + OpenCV 全面实战:解锁图像处理与视觉智能的核心技能
68 2
WK
|
3月前
|
计算机视觉 Python
如何使用OpenCV进行基本图像处理
使用OpenCV进行基本图像处理包括安装OpenCV,读取与显示图像,转换图像颜色空间(如从BGR到RGB),调整图像大小,裁剪特定区域,旋转图像,以及应用图像滤镜如高斯模糊等效果。这些基础操作是进行更复杂图像处理任务的前提。OpenCV还支持特征检测、图像分割及对象识别等高级功能。
WK
49 4
|
6月前
|
人工智能 计算机视觉 Python
【OpenCV】计算机视觉图像处理基础知识(上)
【OpenCV】计算机视觉图像处理基础知识(上)
|
6月前
|
算法 计算机视觉
【OpenCV】计算机视觉图像处理基础知识(下)
【OpenCV】计算机视觉图像处理基础知识(下)
|
6月前
|
API 计算机视觉
【OpenCV】形态学滤波(2):开运算、形态学梯度、顶帽、黑帽
【OpenCV】形态学滤波(2):开运算、形态学梯度、顶帽、黑帽
|
6月前
|
算法 安全 机器人
最新版opencv4.9安装介绍,基本图像处理详解
最新版opencv4.9安装介绍,基本图像处理详解
305 0
|
6月前
|
机器学习/深度学习 存储 算法
OpenCV与NumPy:图像处理中的黄金组合
【4月更文挑战第17天】OpenCV和NumPy是Python图像处理的两大利器,互补协作形成黄金组合。OpenCV专注计算机视觉,提供丰富算法,而NumPy擅长数值计算和数组操作。两者无缝对接,共同实现高效、灵活的图像处理任务。通过灰度化、二值化、边缘检测等案例,展示了它们的协同作用。未来,这一组合将在计算机视觉和机器学习领域发挥更大作用,解锁更多图像处理潜力。
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
328 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
49 4