算法导论第四章分治策略实例解析(一)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 一、第三章简单回顾    中间略过了第三章, 第三章主要是介绍如何从数学层面上科学地定义算法复杂度,以致于能够以一套公有的标准来分析算法。其中,我认为只要记住三个符号就可以了,其他的就看个人情况,除非你需要对一个算法剖根问底,不然还真用不到,我们只需有个印象,知道这玩意是用来分析算法性能的。

一、第三章简单回顾 

  中间略过了第三章, 第三章主要是介绍如何从数学层面上科学地定义算法复杂度,以致于能够以一套公有的标准来分析算法。其中,我认为只要记住三个符号就可以了,其他的就看个人情况,除非你需要对一个算法剖根问底,不然还真用不到,我们只需有个印象,知道这玩意是用来分析算法性能的。三个量分别是:确定一个函数渐近上界的Ο符号,渐近下届Ω符号,以及渐近紧确界Θ符号,这是在分析一个算法的界限时常用的分析方法,具体的就详看书本了,对于我们更多关注上层算法的表达来说,这些显得不是那么重要,我的理解是Ο可以简单看成最坏运行时间,Ω是最好运行时间,Θ是平均运行时间。一般我们在写一个算法的运行时间时,大多是以Θ符号来表示。参考下面这幅经典的图:

二、第四章两大板块

  第四章讲递归,也是数学的东西太多了,我准备这样来组织这章的结构:先用一个例子(最大子数组和)来讲解用到递归的一个经典方法——分治法,然后在引入如何解递归式,即引入解递归式的三种方法

1、由分治法引发的

 这一章提出了一个在现在各大IT公司在今天依然很喜欢考的一道笔试面试题:

求连续子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。

例如输入的数组为1, -2, 3, 10, -4, 7, 2, -5,和最大的子数组为3, 10, -4, 7, 2,
因此输出为该子数组的和18。

要求时间复杂度是O(n),我们暂且不管这个,由浅入深地分析一下这道题,时间复杂度从O(n^2)->O(nlgn)->O(n)。

1)、第一,大部分人想到的肯定是暴力法,两个for循环,时间复杂度自然是O(n^2),如下:

 1 /************************************************************************/
 2 /*  暴力法                                                       
 3 /************************************************************************/
 4 void MaxSubArraySum_Force(int arr[], vector<int> &subarr, int len)
 5 {
 6     if (len == 0)
 7         return;
 8     int nMax = INT_MIN;
 9     int low = 0, high = 0;
10     for (int i = 0; i < len; i ++) {
11         int nSum = 0;
12         for (int j = i; j < len; j ++) {
13             nSum += arr[j];
14             if (nSum > nMax) {
15                 nMax = nSum;
16                 low = i;
17                 high = j;
18             }
19         }
20     }
21     for (int i = low; i <= high; i ++) {
22         subarr.push_back(arr[i]);
23     }
24 }

 

2)、第二,看了《算法导论》,你可能会想到分治法,看完之后你肯定会为该分治思想而惊叹,尤其是“横跨中点”的计算思想。简单说下该分治思想,其实很简单,最大和子数组无非有三种情况:左边,右边,中间。

时间复杂度分析:

  根据分治的思想,时间复杂度的计算包括三部分:两边+中间。由于分治的依托就是递归,我们可以写出下面的递推式(和合并排序的递推式是一样的):

其中的Θ(n)为处理最大和在数组中间时的情况,经过计算(怎么计算的,请看本节第二部分:解分治法的三种方法,可以得到分治法的时间复杂度为Θ(nlgn)。代码如下:

 1 /************************************************************************/
 2 /*    分治法
 3     最大和子数组有三种情况:
 4     1)A[1...mid]
 5     2)A[mid+1...N]
 6     3)A[i..mid..j]
 7 /************************************************************************/
 8 //find max crossing left and right
 9 int Find_Max_Crossing_Subarray(int arr[], int low, int mid, int high)
10 {
11     const int infinite = -9999;
12     int left_sum = infinite;
13     int right_sum = infinite;
14 
15     int max_left = -1, max_right = -1;
16 
17     int sum = 0; //from mid to left;
18     for (int i = mid; i >= low; i --) {
19         sum += arr[i];
20         if (sum > left_sum) {
21             left_sum = sum;
22             max_left = i;        
23         }
24     }
25     sum = 0;  //from mid to right
26     for (int j = mid + 1; j <= high; j ++) {
27         sum += arr[j];
28         if (sum > right_sum) {
29             right_sum = sum;
30             max_right = j;
31         }
32     }
33     return (left_sum + right_sum);
34 }
35 
36 int Find_Maximum_Subarray(int arr[], int low, int high)
37 {
38     if (high == low) //only one element;
39         return arr[low];
40     else {
41         int mid = (low + high)/2;
42         int leftSum = Find_Maximum_Subarray(arr, low, mid);
43         int rightSum = Find_Maximum_Subarray(arr, mid+1, high);
44         int crossSum = Find_Max_Crossing_Subarray(arr, low, mid, high);
45 
46         if (leftSum >= rightSum && leftSum >= crossSum)
47             return leftSum;
48         else if (rightSum >= leftSum && rightSum >= crossSum)
49             return rightSum;
50         else 
51             return crossSum;
52     }
53 }

 

3)、第三,看了《算法导论》习题4.1-5,你又有了另外一种思路:数组A[1...j+1]的最大和子数组,有两种情况:a) A[1...j]的最大和子数组; b) 某个A[i...j+1]的最大和子数组,假设你现在不知道动态规划,这种方法也许会让你眼前一亮,确实是这么回事,恩,看代码吧。时间复杂度不用想,肯定是O(n)。和暴力法比起来,我们的改动仅仅是用一个指针指向某个使和小于零的子数组的左区间(当和小于零时,区间向左减小,当和在增加时,区间向右增大)。因此,我们给这种方法取个名字叫区间法。

 1 /************************************************************************/
 2 /*    区间法
 3     求A[1...j+1]的最大和子数组,有两种情况:
 4     1)A[1...j]的最大和子数组
 5     2)某个A[i...j+1]的最大和子数组                                                      
 6 /************************************************************************/
 7 void MaxSubArraySum_Greedy(int arr[], vector<int> &subarr, int len)
 8 {
 9     if (len == 0)
10         return;
11     int nMax = INT_MIN;
12     int low = 0, high = 0;
13     int cur = 0; //一个指针更新子数组的左区间
14     int nSum = 0;
15     for (int i = 0; i < len; i ++) {
16         nSum += arr[i];
17         if (nSum > nMax) {
18             nMax = nSum;
19             low = cur;
20             high = i;
21         }
22         if (nSum < 0) {
23             cur += 1;
24             nSum = 0;
25         }
26     }
27     for (int i = low; i <= high; i ++)
28         subarr.push_back(arr[i]);
29 }


第四,你可能在平常的学习过程中,听说过该问题最经典的解是用动态规划来解,等你学习之后,你发现确实是这样,然后你又一次为之惊叹。动态规划算法最主要的是寻找递推关系式,大概思想是这样的:数组A[1...j+1]的最大和:要么是A[1...j]+A[j+1]的最大和,要么是A[j+1],据此,可以很容易写出其递推式为:

sum[i+1] = Max(sum[i] + A[i+1], A[i+1])

化简之后,其实就是比较sum[i] ?> 0(sum[i] + A[i+1] ?> A[i+1]),由此,就很容易写出代码如下:

 1 /************************************************************************/
 2 /*  动态规划(对应着上面的贪心法看,略有不同)
 3     求A[1...j+1]的最大和子数组,有两种情况:
 4         1)A[1...j]+A[j+1]的最大和子数组
 5         2)A[j+1]
 6     dp递推式:
 7         sum[j+1] = max(sum[j] + A[j+1], A[j+1])
 8 /************************************************************************/
 9 int MaxSubArraySum_dp(int arr[], int len)
10 {
11     if (len <= 0)
12         exit(-1);
13     int nMax = INT_MIN;
14     int sum = 0;
15     
16     for (int i = 0; i < len; i ++) {
17         if (sum >= 0) 
18             sum += arr[i];
19         else
20             sum = arr[i];
21         if (sum > nMax)
22             nMax = sum;
23     }
24     return nMax;
25 }

  可以看出,区间法动态规划有几分相似,我觉得两种方法的出发点和终点都是一致的,只不过过程不同。动态规划严格遵循递推式,而区间法是寻找使区间变化的标识,即和是否小于零,而这个标识正是动态规划采用的。

  由于光这一部分就已经写得足够长了,为了方便阅读,所以本节第二部分:解递归式的三种方法 转 算法导论第四章编程实践(二)。

目录
相关文章
|
22天前
|
数据采集 安全 数据管理
深度解析:DataHub的数据集成与管理策略
【10月更文挑战第23天】DataHub 是阿里云推出的一款数据集成与管理平台,旨在帮助企业高效地处理和管理多源异构数据。作为一名已经有一定 DataHub 使用经验的技术人员,我深知其在数据集成与管理方面的强大功能。本文将从个人的角度出发,深入探讨 DataHub 的核心技术、工作原理,以及如何实现多源异构数据的高效集成、数据清洗与转换、数据权限管理和安全控制措施。通过具体的案例分析,展示 DataHub 在解决复杂数据管理问题上的优势。
97 1
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
21天前
|
存储 负载均衡 监控
数据库多实例的深入解析
【10月更文挑战第24天】数据库多实例是一种重要的数据库架构方式,它为数据库的高效运行和灵活管理提供了多种优势。在实际应用中,需要根据具体的业务需求和技术环境,合理选择和配置多实例,以充分发挥其优势,提高数据库系统的性能和可靠性。随着技术的不断发展和进步,数据库多实例技术也将不断完善和创新,为数据库管理带来更多的可能性和便利。
91 57
|
9天前
|
监控 关系型数据库 MySQL
MySQL自增ID耗尽应对策略:技术解决方案全解析
在数据库管理中,MySQL的自增ID(AUTO_INCREMENT)属性为表中的每一行提供了一个唯一的标识符。然而,当自增ID达到其最大值时,如何处理这一情况成为了数据库管理员和开发者必须面对的问题。本文将探讨MySQL自增ID耗尽的原因、影响以及有效的应对策略。
32 3
|
11天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
28 2
|
15天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
49 4
|
16天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
19天前
|
安全 前端开发 Java
Web安全进阶:XSS与CSRF攻击防御策略深度解析
【10月更文挑战第26天】Web安全是现代软件开发的重要领域,本文深入探讨了XSS和CSRF两种常见攻击的原理及防御策略。针对XSS,介绍了输入验证与转义、使用CSP、WAF、HTTP-only Cookie和代码审查等方法。对于CSRF,提出了启用CSRF保护、设置CSRF Token、使用HTTPS、二次验证和用户教育等措施。通过这些策略,开发者可以构建更安全的Web应用。
57 4
|
18天前
|
安全 Go PHP
Web安全进阶:XSS与CSRF攻击防御策略深度解析
【10月更文挑战第27天】本文深入解析了Web安全中的XSS和CSRF攻击防御策略。针对XSS,介绍了输入验证与净化、内容安全策略(CSP)和HTTP头部安全配置;针对CSRF,提出了使用CSRF令牌、验证HTTP请求头、限制同源策略和双重提交Cookie等方法,帮助开发者有效保护网站和用户数据安全。
45 2
|
22天前
|
数据采集 机器学习/深度学习 数据挖掘
10种数据预处理中的数据泄露模式解析:识别与避免策略
在机器学习中,数据泄露是一个常见问题,指的是测试数据在数据准备阶段无意中混入训练数据,导致模型在测试集上的表现失真。本文详细探讨了数据预处理步骤中的数据泄露问题,包括缺失值填充、分类编码、数据缩放、离散化和重采样,并提供了具体的代码示例,展示了如何避免数据泄露,确保模型的测试结果可靠。
34 2

推荐镜像

更多