OpenCV学习(24) 直方图(1)

简介:       直方图是对数据的统计,并将统计结果分布于一系列预定义的槽中。这里的数据不仅仅指的是灰度值,它可以是任何能有效描述图像特征的数据,比如图像梯度等等。       假设有一个矩阵包含一张图像的信息 (灰度值 0-255),我们已经知道灰度值范围是0-255,假设有16个槽(bin),则有下面的划分: 我们可以统计落入每个槽中像素的数目,并用直方图的形式显示出来。
  •       直方图是对数据的统计,并将统计结果分布于一系列预定义的槽中。这里的数据不仅仅指的是灰度值,它可以是任何能有效描述图像特征的数据,比如图像梯度等等。

  •       假设有一个矩阵包含一张图像的信息 (灰度值 0-255),我们已经知道灰度值范围是0-255,假设有16个槽(bin),则有下面的划分:

  • c73157b35da93244fa5489fc51b92217c199bea7

    我们可以统计落入每个槽中像素的数目,并用直方图的形式显示出来。

    Histogram_Calculation_Theory_Hist1

  •  

  • 让我们再来了解一下直方图的一些具体细节:

    1. dims: 需要统计的特征的数目, 在上例中, dims = 1 因为我们仅仅统计了灰度值(灰度图像)。
    2. bins: 每个特征空间 子区段 的数目,在上例中, bins = 16
    3. range: 每个特征空间的取值范围,在上例中, range = [0,255]
  •       怎样去统计两个特征呢? 在这种情况下, 直方图就是3维的了,x轴和y轴分别代表一个特征, z轴是掉入 ea59e605b1924251214a4cd4eb6eb4465ffa3565 组合中的样本数目, 同样的方法适用于更高维的情形 (超过2维的很难用可视化的方式显示出来)。

 

下面是读取一副图像的灰度图,然后显示它的灰度值统计直方图的代码:

 

int main( int argc, char** argv )
{
Mat src, dst;

/// 以单通道方式打开图像
src = imread( "../lenna.jpg", 0);

if( !src.data )
{ return -1; }


/// 设定bin数目
int histSize[1] = {255};

/// 设定取值范围 ( R,G,B) )
float range[] = { 0, 255 } ;
const float* histRange = { range };

bool uniform = true; bool accumulate = false;

//结果直方图
Mat hist;

calcHist( &src, 1, 0, Mat(), hist, 1, histSize, &histRange, uniform, accumulate );

// 创建直方图画布
int hist_w = 512;
int hist_h = 512;
//计算每个bin的像素宽度
int bin_w = cvRound( (double) hist_w/histSize[0] );

Mat histImage( hist_w, hist_h, CV_8UC3, Scalar( 0,0,0) );

/// 将直方图归一化到范围 [ 0, histImage.rows ]
normalize(hist, hist, 0, histImage.rows, NORM_MINMAX, -1, Mat() );


/// 在直方图画布上画出直方图,线宽为bin_w
for( int i = 0; i < histSize[0]; i++ )
{
line( histImage, Point( bin_w*(i), hist_h - cvRound(hist.at<float>(i)) ) ,
Point( bin_w*(i), hist_h),
Scalar( 0, 0, 255), bin_w, 8, 0 );
}

/// 显示直方图
namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE );
imshow("calcHist Demo", histImage );

waitKey(0);

return 0;

}

 

      OpenCV中的直方图计算函数,参数比较多,第一个参数是指向图像矩阵的指针,之所以是指针,是因为OpenCV中,可以统计多个图像的直方图,并把结果累加起来,我们的代码中只有一副图像,所以取&src。第二个参数就是指统计图像的数量,本程序中为1。第三个参数表示对某个通道进行直方图统计,我们读入的是灰度图,只有一个通道,所以值为0 。第四个参数是掩码。第五个参数是输出的直方图结果矩阵。第六个参数是直方图的维数。第七个参数是每个维度的取值范围,我们是单通道图像灰度值直方图,所以取值范围是[0 ,255],通常这个参数是个二维指针。

//计算直方图
//第二个参数1表示只对一副图像进行直方图处理
//第三个参数表示只处理channel 0,对多个channel的图像,可以选1,2等等。
//第四个参数Mat(),表示不使用掩码
//hist是直方图结果
//第六个参数1表示是1维直方图
//第七个参数,直方图bin的数目
//第八个参数是像素取值范围,第九个参数是各维取值范围相同,第十个参数是是否累加多副图像的统计结果,如果处理多个图像,需要这个参数
calcHist( &src, 1, 0, Mat(), hist, 1, histSize, &histRange, uniform, accumulate );

程序执行后效果如下:

image

程序源代码:工程文件FirstOpenCV18

相关文章
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
128 2
|
5月前
|
计算机视觉
OpenCV中的二维直方图
【6月更文挑战第12天】中的二维直方图。
21 1
|
4月前
|
计算机视觉 Python
opencv 处理图像去噪的几种方法学习
OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例: 均值滤波:使用像素邻域的灰度均值代替该像素的值。
58 0
|
5月前
|
算法 计算机视觉
【Qt&OpenCV 直方图计算 split/calcHist/normalize】
【Qt&OpenCV 直方图计算 split/calcHist/normalize】
45 0
|
5月前
|
机器学习/深度学习 开发框架 TensorFlow
### 如何系统化学习OpenCV4
### 如何系统化学习OpenCV4
39 0
|
6月前
|
计算机视觉 索引
【OpenCV】- 直方图反向投影
【OpenCV】- 直方图反向投影
|
6月前
|
计算机视觉 索引
【OpenCV】直方图计算 & 均衡化直方图
【OpenCV】直方图计算 & 均衡化直方图
|
6月前
|
算法 计算机视觉 Python
【OpenCV】-算子(Sobel、Canny、Laplacian)学习
【OpenCV】-算子(Sobel、Canny、Laplacian)学习
142 2
|
6月前
|
存储 计算机视觉
OpenCV—学习基本绘图
OpenCV—学习基本绘图
|
6月前
|
算法 计算机视觉
OpenCV直方图
OpenCV直方图
36 0