损失函数的概率验证及性质

简介: 从http://www.cnblogs.com/mikewolf2002/p/7560748.html这篇文章中,我们知道损失函数为下面的形式:\[J(\theta_0, \theta_1..., \theta_n) = \frac{1}{2m}\sum\limits_{i=0}^{m}(h_\theta(x_0^{(i)}, x_1^{(i)}, .

http://www.cnblogs.com/mikewolf2002/p/7560748.html这篇文章中,我们知道损失函数为下面的形式:

\[J(\theta_0, \theta_1..., \theta_n) = \frac{1}{2m}\sum\limits_{i=0}^{m}(h_\theta(x_0^{(i)}, x_1^{(i)}, ...,x_n^{(i)})- y^{(i)})^2\]

或者

\[J(\mathbf\theta) = \frac{1}{2}(\mathbf{X\theta} - \mathbf{Y})^T(\mathbf{X\theta} - \mathbf{Y})\]

     为什么选这个函数为损失函数呢?也就是说为什么选择最小二乘作为指标来计算回归方程参数?这个可以用概率论的方法进行证明。

     首先我们提供一组假设,依据这些假设,来证明选择最小二乘是合理的。

1 假设1

     假设输入与输出为线性函数关系,表示为:\(y^{(i)}=\theta^Tx^{(i)}+\epsilon^{(i)}\)

     其中\(\epsilon^{(i)}\)为误差项,这个参数可以理解为对未建模效应的捕获,如果还有其他特征,这个误差项表示了一种我们没有捕获的特征,或者看成一种随机的噪声

     假设\(\epsilon^{(i)}\)服从高斯分布(正态分布)\(\epsilon^{(i)} \sim N(0,\sigma^2)\),表示一个均值是0,方差是\(\sigma^2\)的高斯分布,且每个误差项彼此之间是独立的,并且他们服从均值和方差相同的高斯分布(IID independently and identically distributed,独立同分布)。

那么高斯分布的概率密度函数:

\[p(\epsilon^{(i)})=\frac{1}{\sqrt{2\pi}\sigma}exp\big(-\frac{(\epsilon^{(i)})^2}{2\sigma^2}\big)\]

根据上述两式可得:

\[p(y^{(i)}|x^{(i)};\theta)=\frac{1}{\sqrt{2\pi}\sigma}exp\big(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2}\big)\]

     注意: \(\theta\)并不是一个随机变量,而是一个尝试估计的值,就是说它本身是一个常量,只不过我们不知道它的值,所以上式中用分号表示。分号应读作“以…作为参数”,上式读作“给定\(x^{(i)}\)以\(\theta\)为参数的\(y^{(i)}\)的概率服从高斯分布”。

     即在给定了特征与参数之后,输出是一个服从高斯分布的随机变量,可描述为:\(y^{(i)}|x^{(i)};\theta \sim N(\theta^Tx^{(i)},\sigma^2)\),

为什么选取高斯分布?

1) 便于数学处理。

2) 对绝大多数问题,如果使用了线性回归模型,然后测量误差分布,通常会发现误差是高斯分布的。

3) 中心极限定律:若干独立的随机变量之和趋向于服从高斯分布。若误差有多个因素导致,这些因素造成的效应的总和接近服从高斯分布。


2 假设2

      给定\(X\)(特征矩阵,包含所有的\(x^{(i)}\))和\(\theta\),如何描述\(y^{(i)}\)的概率呢?首先我们可以把\(y^{(i)}\)的概率写成\(p(\overrightarrow{y}|X;\theta)\)。这个概率可以把\(\theta\)看成为固定值,\(\overrightarrow{y}\)或\(X\)的函数。我们称这个函数为\(\theta\)的似然函数。

\[L(\theta)=L(\theta;X,\overrightarrow{y})=p(\overrightarrow{y}|X;\theta)\]


由于\(\epsilon^{(i)}\)是独立同分布,所以给定\(x^{(i)}\)情况下\(y^{(i)}\)也是独立同分布,则上式可写成所有分布的乘积:


\[\begin{align*} L(\theta) &=\prod_{i=1}^{m}p(y^{(i)}|x^{(i)};\theta) \\
&=\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi}\sigma}exp\big(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2}\big) \end{align*}\]

3 假设3

极大似然估计:选取\(\theta\)使似然性\(L(\theta)\)最大化(数据出现的可能性尽可能大)

定义\(L(\theta)\)对数似然函数为 :

\begin{align*}l(\theta) &= logL(\theta) \\ &=log\prod_{i=1}^{m}\frac{1}{\sqrt{2\pi}\sigma}exp\big(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2}\big) \\ &=\sum\limits_{i=1}^{m}log\frac{1}{\sqrt{2\pi}\sigma}exp\big(-\frac{(y^{(i)}-\theta^Tx^{(i)})^2}{2\sigma^2}\big) \\ &=mlog\frac{1}{\sqrt{2\pi}\sigma}-\frac{1}{\sigma^2}*\frac{1}{2}\sum\limits_{i=1}^m(y^{(i)}-\theta^Tx^{(i)})^2\end{align*}

上式两个加项,前一项为常数。所以,使似然函数最大,就是使后一项最小,即:\(\frac{1}{2}\sum\limits_{i=1}^m(y^{(i)}-\theta^Tx^{(i)})^2\)

这一项就是之前的\(J(\theta)\),由此得证,之前的最小二乘法计算参数,实际上是假设了误差项满足高斯分布,且独立同分布的情况,使\(\theta\)似然最大化来计算参数

注意:高斯分布的方差对最终结果没有影响,由于方差一定为正数,所以无论取什么值,最后结果都相同。

假设\(h_{\theta}(x)=\theta_{0}+\theta_{1}x\),下面在matlib中画出损失函数\(J(\theta)\)。

样本文件下载:ex2Data.zip

代码如下:

clear all; close all; clc;
J_vals = zeros(100, 100);   % 初始化损失函数参数矩阵,假设只有theta_0, theta_1
theta0_vals = linspace(-3, 3, 100); %范围-3,3,100个值
theta1_vals = linspace(-1, 1, 100); %范围-1,1,100个值
x = load('ex2x.dat');
y = load('ex2y.dat');
m = length(x);
x = [ones(m, 1) x];
%循环theta0,theta1
for i = 1:length(theta0_vals)
	  for j = 1:length(theta1_vals)
	      t = [theta0_vals(i); theta1_vals(j)];
	      J_vals(i,j) = 0;
          for k = 1:m
             J_vals(i,j) = J_vals(i,j)+(x(k,:)*t-y(k))^2;
          end
          J_vals(i,j) = J_vals(i,j)/(2*m);
    end
end

% 用surf函数来画损失函数
J_vals = J_vals'
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1')
figure;
% 画损失函数的轮廓,注意范围是0.01 - 100,总共15个轮廓
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 2, 15))
xlabel('\theta_0'); ylabel('\theta_1')
View Code
程序运行后效果如下

imageimage

你可以旋转图,从不同视角观察这个图形。右边的轮廓图\(\theta\)范围是0.01 - 100,总共15个轮廓。

我们可以看到取我们用梯度下降法中求得的\(\theta\)值时,损失函数取得最小值,并且损失函数具有全局最小值,并没有局部极小值,它是一个凸函数。

这是我们用批量梯度下降法求得的\(\theta\)值。 http://www.cnblogs.com/mikewolf2002/p/7634571.html

theta =

    0.7502
     0.0639

相关文章
|
3月前
|
算法
偏差与方差理论
偏差与方差理论
27 0
|
5月前
|
Python
联合概率 边缘概率 条件概率 贝叶斯定理
联合概率 边缘概率 条件概率 贝叶斯定理
90 0
|
6月前
|
机器学习/深度学习
交叉熵损失函数的使用目的(很肤浅的理解)
交叉熵损失函数的使用目的(很肤浅的理解)
|
8月前
|
机器学习/深度学习 资源调度 算法
对数几率回归
对数几率回归
106 0
【概率論】常用專業名詞中韓對照表 | 확률론 한중 번역표
【概率論】常用專業名詞中韓對照表 | 확률론 한중 번역표
78 0
14 棣莫弗的二项概率逼近
14 棣莫弗的二项概率逼近
97 0
|
Java
【附录】概率基本性质与法则的推导证明
本文从概率论三大公理出发,推导证明概率基本法则。
166 0
【附录】概率基本性质与法则的推导证明
|
缓存 算法 Python
概率图推断之信念传播
变量消除算法有个致命的缺陷:每次查询都要要从头开始重新启动算法。这样会非常浪费资源,并且在计算上很麻烦。 这个问题也很容易避免。通过在第一次运行变量消除算法后缓存这些因子,我们可以轻松地计算新的边缘概率查询,基本上不需要额外的成本。 实现上面的功能有2中算法:信念传播(BP)和全联结树算法,本文先介绍信念传播算法。
217 0
概率图推断之信念传播
|
人工智能 算法 关系型数据库
概率图表示之贝叶斯网络
有向图模型(又称贝叶斯网络)是一类概率分布,它让有向图可以自然地描述紧凑参数化。形式地讲,贝叶斯网络是一个有向图G = (V,E)。
9457 0
概率图表示之贝叶斯网络
|
资源调度 算法 关系型数据库
概率图推断之变量消除算法
事实证明,推理是一项颇具挑战的任务。对于很多我们感兴趣的概率,要准确回答这些问题都是NP难题。至关重要的是,推理是否容易处理取决于描述概率的图的结构。尽管有些问题很难解决,我们仍然可以通过近似推理方法获得有用的答案。
283 0
概率图推断之变量消除算法