【附录】概率基本性质与法则的推导证明
公理
$$
\begin{aligned}
&P(\Omega) = 1\
&P(A) \ge 0, \forall A \in 2^\Omega\
&P(A \cup B) = P(A) + P(B), \forall A, B \in 2^\Omega, A \cap B = \emptyset
\end{aligned}
$$
1. $A \subseteq B \implies P(A) \leq P(B)$
证明: $\;$$\because A \subseteq B$
$\quad\qquad$$\therefore \exist S$,满足 $B = A \cup S$,其中 $A \cap S = \emptyset$
$\quad\qquad$根据公理(3)可得, $P(B) = P(A \cup S) = P(A) + P(S)$
$\quad\qquad$由公理(2)可知 $P(S) \ge 0$,
$\quad\qquad$$\therefore P(B) = P(A) + P(S) \ge P(A)$ ,即$P(A) \le P(B) \qquad \blacksquare$
2. $P(A \cap B) \leq \min(P(A), P(B))$
证明: $\;$设 $J$ 为 $A, B$ 的交集,即 $J = A \cap B$,则有 $J \subseteq A$ 且 $J \subseteq B$
$\quad\qquad$根据性质 $A \subseteq B \implies P(A) \leq P(B)$ 可得:
$\quad\qquad$$P(J) = P(A \cap B) \leq P(A)$;
$\quad\qquad$$P(J) = P(A \cap B) \leq P(B)$;
$\quad\qquad$综合上面两个等式可得,$P(A \cap B) \leq \min(P(A), P(B)) \qquad \blacksquare$
3. $P(A \cup B) \leq P(A) + P(B)$
证明: $\;$设 $B\rq \subseteq B$, $A \cap B\rq = \emptyset$,且 $A \cup B = A \cup B\rq$,
$\quad\qquad$$\because A \cap B\rq = \emptyset$
$\quad\qquad$$\therefore$ 根据公理(3)可得: $P(A \cup B) = P(A \cup B\rq) = P(A)+P(B\rq)$
$\quad\qquad$$\because B\rq \subseteq B$
$\quad\qquad$$\therefore$ 根据性质(2)可得:$P(B\rq) \leq P(B)$
$\quad\qquad$$\therefore P(A)+P(B\rq) \leq P(A)+P(B)$
$\quad\qquad$$\therefore P(A \cup B) \leq P(A)+P(B) \qquad \blacksquare$
4. $P(\Omega - A) = 1 - P(A)$
证明: $\;$$\because \Omega = (\Omega - A) \cup A, (\Omega - A) \cap A = \emptyset$
$\quad\qquad$$\therefore P(\Omega) = P((\Omega - A) \cup A) = P(\Omega - A) + P(A)$ (公理3)
$\quad\qquad$$\because P(\Omega) = 1$ (公理1)
$\quad\qquad$$\therefore 1 = P(\Omega - A) + P(A)$
$\quad\qquad$交换位置得 $P(\Omega - A) = 1 - P(A) \qquad \blacksquare$
5. 全概率法则
证明: $\;$$\because A_1, \dotsc, A_k$ 是一组不相交的事件
$\quad\qquad$$\therefore P(\bigcup_i A_i) = \sum_i P(A_i)$ (公理3)
$\quad\qquad$$\because \bigcup^k_{i=1} A_i = \Omega$
$\quad\qquad$$\therefore P(\Omega) = \sum_i P(A_i)$
$\quad\qquad$$\because P(\Omega) = 1$ (公理1)
$\quad\qquad$$\therefore \sum_i P(A_i) = 1 \qquad \blacksquare$