同惠更新,伯努利一样,人们熟悉棣莫弗,想必是因为著名的棣莫弗公式,如下:
据数理统计学简史一书上的说明,棣莫弗之所以投身到二项概率的研究,非因伯努利之故,而又是赌博问题(赌博贡献很大丫哈)。有一天一个哥们,也许是个赌徒,向棣莫弗提了一个和赌博相关的一个问题:A,B两人在赌场里赌博,A,B各自的获胜概率是p和q=1−p,赌n局,若A赢的局数X>np,则A付给赌场X−np元,否则B付给赌场np−X元。问赌场挣钱的期望值是多少?按定义可知,此期望值为:
上式的b(N,平,i)为二项概率,棣莫弗最终在Np为整数的条件下得到:
当m=N/2时,N趋于无穷,
也就是说上述问题的本质上是之前所讲的一个二项分布。虽然从上述公式可以集结此问题,但在N很大时,计算不易,故棣莫弗想找到一个更方便于计算的近似公式。
棣莫弗后来虽然做了一些计算并得到了一些近似结果,但是还不够,随后有人讲棣莫弗的研究工作告诉给了斯特林,于是,便直接催生了在数学分析中必学的一个重要公式斯特林公式(斯特林公式最初发表于1730年,而后棣莫弗改进了斯特林公式):
(其中,m= N/2)
1733年,棣莫弗有了一个决定性意义的举动,他证明了当N趋于去穷时,有下列式子成立:
不要小瞧了这个公式。当它与上面给出的这个公式结合后,便有了: 根据上面式子,近似地以定积分代替和,得到下式:
不知道,当读者读到这里的时候,是否从上式看出了些许端倪,此式可隐藏了一个我们习以为常却极其重要的概念。OK,或许其形式不够明朗,借用rickjin的式子转化下:
没错,正态分布的概率密度(函数)在上述的积分公式中出现了!于此,我们得到了一个结论,原来二项分布的极限分布便是正态分布。与此同时,还引出了统计学史上占据重要地位的中心极限定理。
「棣莫弗-拉普拉斯定理」:设随机变量Xn(n=1,2…)服从参数为p的二项分布,则对任意的x,恒有下式成立:
我们便称此定理为中心极限定理。而且还透露着一个极为重要的信息:1730年,棣莫弗用二项分布逼近竟然得到了正太密度函数,并首次提出了中心极限定理。
还没完,随后,在1744年,拉普拉斯证明了:
最终,1780年,拉普拉斯建立了中心极限定理的一般形式(也就是之前所讲的中心极限定理的一般形式):
「Lindeberg-Levy中心极限定理」设X1,⋯,Xn独立同分布,且具有有限的均值μ和方差σ2,则在n→∞时,有
棣莫弗的工作对数理统计学有着很大的影响,棣莫弗40年之后,拉普拉斯建立中心极限定理的一般形式,20世纪30年代最终完成独立和中心极限定理最一般的形式,在中心极限定理的基础之上,统计学家们发现当样本量趋于无穷时,一系列重要统计量的极限分布如二项分布,都有正态分布的形式,也就是说,这也构成了数理统计学中大样本方法的基础。
此外,从上面的棣莫弗-拉普拉斯定理,你或许还没有看出什么蹊跷。但我们可以这样理解:若取c充分大,则对足够大的N,事件的概率可任意接近于1,由于,故对于任意给定的ε>0, 有下式成立:
而这就是上文中所讲的伯努利大数定律(注:上面讨论的是对称情况,即p=1/2的情况)。
我之所以不厌其烦的要论述这个棣莫弗的二项概率逼近的相关过程,是想说明一点:各个定理.公式彼此之前是有着紧密联系的,要善于发现其中的各种联系。
同时,还有一个问题,相信读者已经意识到了,如本文第一节内容所述,咱们的概率论与数理统计教材讲正态分布的时候,一上来便给出正态分布的概率密度(函数),然后告诉我们说,符合这个概率密度(函数)的称为正态分布,紧接着阐述和证明相关性质,最后说了一句:”在自然现象和社会现象中,大量随机变量都服从或近似服从正态分布,如人的身高,某零件长度的误差,海洋波浪的高度“,然后呢?然后什么也没说了。连正态分布中最基本的两个参数为μ,和δ的的意义都不告诉我们(位置μ参数即为数学期望,尺度参数为δ即为方差,换句话说,有了期望μ和方差δ,即可确定正态分布)。
随后,教材上便开始讲数学期望,方差等概念,最后才讲到中心极限定理。或许在读者阅读本文之后,这些定理的先后发明顺序才得以知晓。殊不知:正态分布的概率密度(函数)形式首次发现于棣莫弗-拉普拉斯中心极限定理中,即先有中心极限定理,而后才有正态分布(你将知道,高斯引入正太误差理论,才成就了正态分布,反过来,拉普拉斯在高斯的工作之上用中心极限定理论证了正态分布)。
如rickjin所言:’‘学家研究数学问题的进程很少是按照我们数学课本的安排顺序推进的,现代的数学课本都是按照数学内在的逻辑进行组织编排的,虽然逻辑结构上严谨优美,却把数学问题研究的历史痕迹抹得一干二净。DNA双螺旋结构的发现者之一James Waston在他的名著《DNA双螺旋》序言中说:‘科学的发现很少会像门外汉所想象的一样,按照直接了当合乎逻辑的方式进行的。’ ’‘