3d中的向量

简介: 向量基础知识   向量有且仅有的两个属性:方向长度(注意:向量性情中不包含位置信息) 向量相等就是其两个属性相等 向量处理标记位置:当向量的起始点与坐标原点重合,这样我们就可以用向量的终点坐标来描述一个处于标准位置的向量 零向量:所有分量都为0 = (0,0,0) 三个特殊向量称为R3的标准基向量:这些向量分别称为i,j,k向量,方向分别与坐标系的x,y,z轴一致,且长度均为1       向量相等 向量相等即方向和长度相等。

 

向量基础知识

 

向量有且仅有的两个属性:方向长度(注意:向量性情中不包含位置信息)

向量相等就是其两个属性相等

向量处理标记位置:当向量的起始点与坐标原点重合,这样我们就可以用向量的终点坐标来描述一个处于标准位置的向量

零向量:所有分量都为0 = (0,0,0)

三个特殊向量称为R3的标准基向量:这些向量分别称为i,j,k向量,方向分别与坐标系的x,y,z轴一致,且长度均为1

 

 

 

向量相等

向量相等即方向和长度相等。

计算向量的长度

几何学中,向量的模就是有向线段的长度。我们可以通过代数的方法计算该向量的大小

clip_image002

在D3DX库中,可以用D3DXVec3Length函数求得

向量的规范化

向量的规范化就是使向量的模变为1,即变为单位向量。可以通过该向量的每一个分量除以该向量的模来实现向量的规范化

向量u(x,y,z) 规范化之后u(x/||u||,y/||u||,z/||u||)

向量的加法

向量的每一个分量相加就是向量的加法

u + v = (ux+vx,uy+vy,uz+vz)

image

向量的减法

image

数乘(向量与一标量向乘结果为一向量)

数乘就是与标量相乘,该运算可对向量进行缩放

点积(向量与向量相乘结果为一标量)

image

上面的等式不能很明显的体现几何上的意义。利用余弦定律,我们能够发现它们的关系。
u · v =|u| * |v| * cosθ,表示两个向量的点积是它们的模和夹角的余弦之积。因此,如果u 和v都是单位向量,那么u · v就是它们夹角的余弦。
一些点积中有用的特性
■ 假如u · v = 0,那么u⊥v。
■ 假如u · v > 0,那么两个向量的角度θ小于90度。
■ 假如u · v < 0,那么两个向量的角度θ大于90度

叉积(向量与向量相乘结果为一向量)

与点积不同(结果为一个标题),叉积的结果是另一个向量。通过把两个向量u和v相乘得到另一的向量p,向量p垂直于u和v。也就是说向量p垂直于u并且垂直于u。

image

image

D3DX库中用D3DXVec3Cross计算两处向量的叉积

向量叉乘如何计算比如向量a=(1,2,3),b=(4,5,6)a叉乘b的计算过程应该是怎样的,求详解

设a=(X1,Y1,Z1),b=(X2,Y2,Z2),
a×b=(Y1Z2-Y2Z1,Z1X2-Z2X1,X1Y2-X2Y1)
(1,2,3)×(4,5,6)=(12-15,12-6,5-8)=(-3,6,-3)

相关文章
|
存储 机器学习/深度学习 计算机视觉
稠密矩阵
稠密矩阵是一种特殊形式的矩阵,其中所有元素都是非零的。与稀疏矩阵相比,稠密矩阵在存储和计算时需要更多的空间和计算资源,因为它的所有元素都需要被存储和计算。
211 7
向量 (高维思考)
向量 (高维思考)
86 0
|
11月前
权重向量介绍
权重向量介绍
177 0
|
机器学习/深度学习 自然语言处理 搜索推荐
向量
向量是一种表示符合线性可加性的数值的数据结构。它可以用于表示词汇、文本或者图片等数据。
99 2
向量的内积外积与其几何意义
向量的内积外积与其几何意义
187 0
|
算法
向量仅仅是向量吗?
向量仅仅是向量吗?
83 0
|
自然语言处理 程序员 容器
向量学习之高维思考
向量学习之高维思考
|
机器学习/深度学习 搜索推荐 数据挖掘
向量、矩阵应用介绍|学习笔记
快速学习向量、矩阵应用介绍
123 0
向量、矩阵应用介绍|学习笔记
|
机器学习/深度学习 搜索推荐 数据挖掘
向量、矩阵应用介绍|学习笔记
快速学习向量、矩阵应用介绍
向量、矩阵应用介绍|学习笔记