Java 实现的各种经典的排序算法小Demo

简介: 由于有上机作业,所以就对数据结构中常用的各种排序算法都写了个Demo,有如下几个:直接插入排序折半插入排序希尔排序冒泡排序快速排序选择排序桶排序 Demo下载地址 下面谈一谈我对这几个排序算法的理解:插入类算法对于直接插入排序:(按从小到大的...

由于有上机作业,所以就对数据结构中常用的各种排序算法都写了个Demo,有如下几个:

  • 直接插入排序
  • 折半插入排序
  • 希尔排序
  • 冒泡排序
  • 快速排序
  • 选择排序
  • 桶排序
    Demo下载地址

下面谈一谈我对这几个排序算法的理解:

插入类算法

对于直接插入排序:(按从小到大的顺序)
核心原理:
若数组中只有一个元素,那么这就已经是有序的了;若数组中元素个数为两个,我们只需要对他们进行比较一次,要么交换顺序,要么不交换顺序就可以实现数组的内容的有序化;但是当数组内的元素的个数为N个呢?又该如何?这就催化了这个直接插入排序算法,其核心就是利用了有序化数组的方式,认为再插入一个新的元素之前都是有序的,只需要从后往前进行查找(找到一个小于待插入数据的位置,记为position,然后把这个数据之后的元素全部向后迁移一个,再把待插入数据插入到position+1的位置即可。(小伙伴们可以想象一下为什么是position+1,因为position位置上的数据小于我们的待插入的数据啊,所以要插在Position的下一个位置上!)

public static void DirectoryInsert(int []array,int length){
        int p,i;
        for(p=1;p<length;p++){
            int temp=array[p];
            i=p-1;
            while(i>=0&&array[i]>temp){
                array[i+1]=array[i];
                i--;
            }
            array[i+1]=temp;
        }
    }

关于折半插入排序算法:
核心原理:
折半插入的核心原理仍然是基于有序表的插入算法,找到位置后,仍然采用插入的方式进行数据添加。但是较之于直接插入有很大的提升,那就是在查找插入位置上的优化,速度上稍微有了一定的提升,虽然在乱序的数据上有良好的效果,但是时间复杂度仍然很大O(n^2)。是稳定的算法。
下面是代码的实现:

private static void Half(int[] array, int length) {
        //p stands for the times of the sort
        int left,right,mid,p;
        for(p=1;p<length;p++){
            int temp=array[p];
            left=0;right=p-1;
            while(left<=right){
                mid=(left+right)/2;
                if(array[mid]>temp){
                    right=mid-1;
                }else{
                    left=mid+1;
                }
            }
            for(int i=p-1;i>=left;i--){
                array[i+1]=array[i];
            }
            array[left]=temp;
        }
    }

对于希尔排序:
核心原理:
希尔排序核心仍然是基于插入方式的,以逐步减小“步长”,采用“分治”的思想对每一个子序列进行排序。最终实现对整个序列的排序。
特点:希尔排序是不稳定的排序算法,会导致数据原始相对位置的改变。如果以步长为2计算,其时间复杂度可达到O(n^2),若数据足够长,步长也足够大那么时间复杂度将接近与O(n),但是一般认为其为O(n^1.3)。
代码实现:

private static void Shell(int[] array, int length) {
        // TODO Auto-generated method stub
        int d=length/2;
        while(d>=1){
            for(int k=0;k<d;k++){
                //to every sub,carry the direcly insert 
                for(int i=k+d;i<length;i+=d){
                    int temp=array[i];
                    int j=i-d;
                    while(j>=k&&array[j]>temp){
                        array[j+d]=array[j];
                        j-=d;
                    }
                    array[j+d]=temp;
                }
            }
            d=d/2;
        }
    }

交换类排序算法


对于冒泡排序:
核心原理:
冒泡排序是我们接触比较早的一个排序算法,其原理就是对数据两两进行比较大小,并对符合要求的数据进行交换。循环n-1次,便可以对n 个数据实现排序。
特点:
时间复杂度O(n^2),由于数据发生交换时并没有发生原始位置的变化,所以冒泡排序算法是稳定的排序算法。
代码实现:

private static void Bubble(int[] array, int length) {
        // TODO Auto-generated method stub
        for(int i=0;i<length;i++){
            //expeclally the end case is "length-i"
            for(int j=1;j<length-i;j++){
                if(array[j-1]>array[j]){
                    int temp=array[j];
                    array[j]=array[j-1];
                    array[j-1]=temp;
                }
            }
        }
    }

对于冒泡排序,这里还有一个改进版的冒泡,是针对于特殊情况下的排序的处理,比如一个已经有序的序列如果再进行正常的冒泡的话,就会浪费时间,所以,如果一个序列已经是有序的,那么就应该跳出这个序列的冒泡,从而在一定程度上减少了时间的浪费。
代码实现:

private static void BubbleBetter(int[] array, int length) {
        // TODO Auto-generated method stub
        boolean flag=false;
        for(int i=0;i<length;i++){
            //expeclally the end case is "length-i"
            for(int j=1;j<length-i;j++){
                flag=false;
                if(array[j-1]>array[j]){
                    int temp=array[j];
                    array[j]=array[j-1];
                    array[j-1]=temp;
                    flag=true;
                }
            }
            if(flag){
                return;
            }
        }
    }

快速排序算法:
核心原理:
快速排序的原理是找到轴值pivot(这里有两种方式,从代码中可以清晰地看到,但最终结果都是一样的,那就是找到这个分割点,再递归的进行排序。
特征:
时间复杂度为O(nlogn,已2为底);
代码如下:

private static void Fast(int[] array, int left, int right) {
        // TODO Auto-generated method stub
        if (left < right) {
            int p = Partition1(array, left, right);
            Fast(array, left, p - 1);
            Fast(array, p + 1, right);
        }
//      if (left < right) {
//          int p = Partition2(array, left, right);
//          Fast(array, left, p - 1);
//          Fast(array, p + 1, right);
//      }
    }

    private static int Partition1(int[] array, int left, int right) {
        int pivot = array[left];
        while (left < right) {
            while (left < right && array[right] >= pivot) {
                right--;
            }
            array[left] = array[right];
            while (left < right && array[left] <= pivot) {
                left++;
            }
            array[right] = array[left];
        }
        array[left] = pivot;
        return left;
    }

    private static int Partition2(int[] array, int start, int end) {
        int pivot = array[start];
        int left = start, right = end;
        while (left <= right) {
            while (left <= right && array[left] <= pivot) {
                left++;
            }
            while (left <= right && array[right] >= pivot) {
                right--;
            }
            if (left < right) {
                Swap(array[right], array[left]);
                left++;
                right--;
            }
        }
        Swap(array[start], array[right]);
        return right;

    }

选择类排序算法


对于选择排序:
核心原理:
两轮循环,第一轮是选择的次数的记录,第二轮是目标查找。所谓目标查找,就是找到一个符合要求的值,记录其位置,然后在第一轮的循环中进行判断,将符合条件者进行交换,如此可实现排序的功能。
特征:
时间复杂度O(n^2),交换n-1次,比较了n^2次。是不稳定的排序算法。
代码:

private static void Select(int[] array, int length) {
        // TODO Auto-generated method stub
        for(int i=1;i<length;i++){
            int k=i-1;
            for(int j=i;j<length;j++){
                if(array[j]<array[k]){
                    k=j;
                }
            }
            if(k!=i-1){
                int temp=array[i-1];
                array[i-1]=array[k];
                array[k]=temp;
            }
        }
    }

归并类排序算法


对于归并排序:
核心原理:
若一个序列只有一个元素,则它是有序的,归并排序不执行任何操作。否则归并排序将执行下面的递归步骤:
1)先把序列划分为长度基本相等的子序列
2)对每个子序列归并并排序
3)把排好序的子序列合并为最终的结果。
特征:
时间复杂度O(nlogn),是不依赖于数据原始顺序的不稳定的排序算法。
代码如下:

private static void MergeFunction(int[] array,int start, int end) {
        // TODO Auto-generated method stub
        if(start<end){
            int mid=(start+end)/2;
            MergeFunction(array, start, mid);
            MergeFunction(array, mid+1, end);
            Merge(array,start,mid,end);
        }
    }

    private static void Merge(int[] array, int start, int mid, int end) {
        // TODO Auto-generated method stub
        int len1=mid-start+1,len2=end-mid;
        int i,j,k;
        //声明数组,分别保存子串信息
        int[] left=new int[len1];
        int[] right=new int[len2];
        for(i=0;i<len1;i++){//执行数据复制
            left[i]=array[i+start];
        }
        for(i=0;i<len2;i++){//执行数据复制
            right[i]=array[i+mid+1];
        }
        i=0;j=0;
        //执行合并操作
        for(k=start;k<end;k++){
            if(i==len1||j==len2){
                break;
            }
            if(left[i]<right[j]){
                array[k]=left[i++];
            }else{
                array[k]=right[j++];
            }
        }

        //若array[start,mid]还有待归并数据,则放到array后面
        while(i<len1){
            array[k++]=left[i++];
        }

        //对array[mid+1,end]见得数据执行同样的操作
        while(j<len2){
            array[k++]=left[j++];
        }
        //释放内存操作
        left=null;
        right=null;

    }

总结:
排序算法多种多样,在不同的情况下选择合适的排序算法能让你事半功倍。

目录
相关文章
|
2月前
|
监控 算法 网络协议
Java 实现局域网电脑屏幕监控算法揭秘
在数字化办公环境中,局域网电脑屏幕监控至关重要。本文介绍用Java实现这一功能的算法,涵盖图像采集、数据传输和监控端显示三个关键环节。通过Java的AWT/Swing库和Robot类抓取屏幕图像,使用Socket进行TCP/IP通信传输图像数据,并利用ImageIO类在监控端展示图像。整个过程确保高效、实时和准确,为提升数字化管理提供了技术基础。
84 15
|
4月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
125 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
11天前
|
存储 算法 Java
解锁“分享文件”高效密码:探秘 Java 二叉搜索树算法
在信息爆炸的时代,文件分享至关重要。二叉搜索树(BST)以其高效的查找性能,为文件分享优化提供了新路径。本文聚焦Java环境下BST的应用,介绍其基础结构、实现示例及进阶优化。BST通过有序节点快速定位文件,结合自平衡树、多线程和权限管理,大幅提升文件分享效率与安全性。代码示例展示了文件插入与查找的基本操作,适用于大规模并发场景,确保分享过程流畅高效。掌握BST算法,助力文件分享创新发展。
|
24天前
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
|
26天前
|
算法 安全 Java
Java线程调度揭秘:从算法到策略,让你面试稳赢!
在社招面试中,关于线程调度和同步的相关问题常常让人感到棘手。今天,我们将深入解析Java中的线程调度算法、调度策略,探讨线程调度器、时间分片的工作原理,并带你了解常见的线程同步方法。让我们一起破解这些面试难题,提升你的Java并发编程技能!
65 16
|
1月前
|
运维 监控 算法
企业局域网监控软件中 Java 优先队列算法的核心优势
企业局域网监控软件是数字化时代企业网络安全与高效运营的基石,犹如一位洞察秋毫的卫士。通过Java实现的优先队列算法,它能依据事件优先级排序,确保关键网络事件如异常流量、数据泄露等被优先处理,保障系统稳定与安全。代码示例展示了如何定义网络事件类并使用PriorityQueue处理高优先级事件,尤其在面对疑似风险时迅速启动应急措施。这一核心技术助力企业在复杂网络环境中稳健前行,护航业务腾飞。
65 32
|
1月前
|
存储 监控 算法
剖析基于Java算法驱动的智能局域网管控之道
本文探讨了基于Java语言的局域网控制方案,结合链表数据结构与令牌桶算法,解决设备管理和流量调度难题。通过链表灵活存储网络设备信息,实现高效设备管理;令牌桶算法则精准控制流量,确保网络平稳运行。二者相辅相成,为校园、企业等局域网提供稳固高效的控制体系,保障业务连续性和数据安全。
|
29天前
|
算法 搜索推荐 Java
【潜意识Java】深度解析黑马项目《苍穹外卖》与蓝桥杯算法的结合问题
本文探讨了如何将算法学习与实际项目相结合,以提升编程竞赛中的解题能力。通过《苍穹外卖》项目,介绍了订单配送路径规划(基于动态规划解决旅行商问题)和商品推荐系统(基于贪心算法)。这些实例不仅展示了算法在实际业务中的应用,还帮助读者更好地准备蓝桥杯等编程竞赛。结合具体代码实现和解析,文章详细说明了如何运用算法优化项目功能,提高解决问题的能力。
58 6
|
29天前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
48 5
|
1月前
|
存储 监控 算法
探秘局域网桌面监控:深入剖析 Java 语言核心算法
在数字化办公时代,局域网桌面监控如同企业的“智慧鹰眼”,确保工作效率与数据安全。本文以Java为载体,揭示哈希表在监控中的关键应用。通过高效的数据结构和算法,哈希表能快速索引设备连接信息,大幅提升监控的时效性和响应速度。代码示例展示了如何用Java实现设备网络连接监控,结合未来技术如AI、大数据,展望更智能的监控体系,助力企业在数字化浪潮中稳健前行。

热门文章

最新文章