caffe: test code for PETA dataset

简介: test code for PETA datasets .... 1 #ifdef WITH_PYTHON_LAYER 2 #include "boost/python.hpp" 3 namespace bp = boost::python; 4 #endif 5 ...

test code for PETA datasets ....

  1 #ifdef WITH_PYTHON_LAYER
  2 #include "boost/python.hpp"
  3 namespace bp = boost::python;
  4 #endif
  5 
  6 #include <glog/logging.h>
  7 
  8 #include <cstring>
  9 #include <map>
 10 #include <string>
 11 #include <vector>
 12 
 13 #include "boost/algorithm/string.hpp"
 14 #include "caffe/caffe.hpp"
 15 #include "caffe/util/signal_handler.h"
 16 #include <fstream>   
 17 #include <sstream>
 18 #include <iostream>
 19 
 20 using caffe::Blob;
 21 using caffe::Caffe;
 22 using caffe::Net;
 23 using caffe::Layer;
 24 using caffe::Solver;
 25 using caffe::shared_ptr;
 26 using caffe::string;
 27 using caffe::Timer;
 28 using caffe::vector;
 29 using std::ostringstream;
 30 using namespace std;
 31 
 32 DEFINE_string(gpu, "",
 33     "Optional; run in GPU mode on given device IDs separated by ','."
 34     "Use '-gpu all' to run on all available GPUs. The effective training "
 35     "batch size is multiplied by the number of devices.");
 36 DEFINE_string(solver, "",
 37     "The solver definition protocol buffer text file.");
 38 DEFINE_string(model, "",
 39     "The model definition protocol buffer text file..");
 40 DEFINE_string(snapshot, "",
 41     "Optional; the snapshot solver state to resume training.");
 42 DEFINE_string(weights, "",
 43     "Optional; the pretrained weights to initialize finetuning, "
 44     "separated by ','. Cannot be set simultaneously with snapshot.");
 45 // DEFINE_int32(iteratinos, 29329,
 46 DEFINE_int32(iterations, 7615,
 47     "The number of iterations to run.");
 48 DEFINE_string(sigint_effect, "stop",
 49              "Optional; action to take when a SIGINT signal is received: "
 50               "snapshot, stop or none.");
 51 DEFINE_string(sighup_effect, "snapshot",
 52              "Optional; action to take when a SIGHUP signal is received: "
 53              "snapshot, stop or none.");
 54 
 55 // A simple registry for caffe commands.
 56 typedef int (*BrewFunction)();
 57 typedef std::map<caffe::string, BrewFunction> BrewMap;
 58 BrewMap g_brew_map;
 59 
 60 #define RegisterBrewFunction(func) \
 61 namespace { \
 62 class __Registerer_##func { \
 63  public: /* NOLINT */ \
 64   __Registerer_##func() { \
 65     g_brew_map[#func] = &func; \
 66   } \
 67 }; \
 68 __Registerer_##func g_registerer_##func; \
 69 }
 70 
 71 static BrewFunction GetBrewFunction(const caffe::string& name) {
 72   if (g_brew_map.count(name)) {
 73     return g_brew_map[name];
 74   } else {
 75     LOG(ERROR) << "Available caffe actions:";
 76     for (BrewMap::iterator it = g_brew_map.begin();
 77          it != g_brew_map.end(); ++it) {
 78       LOG(ERROR) << "\t" << it->first;
 79     }
 80     LOG(FATAL) << "Unknown action: " << name;
 81     return NULL;  // not reachable, just to suppress old compiler warnings.
 82   }
 83 }
 84 
 85 // Parse GPU ids or use all available devices
 86 static void get_gpus(vector<int>* gpus) {
 87   if (FLAGS_gpu == "all") {
 88     int count = 0;
 89 #ifndef CPU_ONLY
 90     CUDA_CHECK(cudaGetDeviceCount(&count));
 91 #else
 92     NO_GPU;
 93 #endif
 94     for (int i = 0; i < count; ++i) {
 95       gpus->push_back(i);
 96     }
 97   } else if (FLAGS_gpu.size()) {
 98     vector<string> strings;
 99     boost::split(strings, FLAGS_gpu, boost::is_any_of(","));
100     for (int i = 0; i < strings.size(); ++i) {
101       gpus->push_back(boost::lexical_cast<int>(strings[i]));
102     }
103   } else {
104     CHECK_EQ(gpus->size(), 0);
105   }
106 }
107 
108 // caffe commands to call by
109 //     caffe <command> <args>
110 //
111 // To add a command, define a function "int command()" and register it with
112 // RegisterBrewFunction(action);
113 
114 // Device Query: show diagnostic information for a GPU device.
115 int device_query() {
116   LOG(INFO) << "Querying GPUs " << FLAGS_gpu;
117   vector<int> gpus;
118   get_gpus(&gpus);
119   for (int i = 0; i < gpus.size(); ++i) {
120     caffe::Caffe::SetDevice(gpus[i]);
121     caffe::Caffe::DeviceQuery();
122   }
123   return 0;
124 }
125 RegisterBrewFunction(device_query);
126 
127 // Load the weights from the specified caffemodel(s) into the train and
128 // test nets.
129 void CopyLayers(caffe::Solver<float>* solver, const std::string& model_list) {
130   std::vector<std::string> model_names;
131   boost::split(model_names, model_list, boost::is_any_of(",") );
132   for (int i = 0; i < model_names.size(); ++i) {
133     LOG(INFO) << "Finetuning from " << model_names[i];
134     solver->net()->CopyTrainedLayersFrom(model_names[i]);
135     for (int j = 0; j < solver->test_nets().size(); ++j) {
136       solver->test_nets()[j]->CopyTrainedLayersFrom(model_names[i]);
137     }
138   }
139 }
140 
141 // Translate the signal effect the user specified on the command-line to the
142 // corresponding enumeration.
143 caffe::SolverAction::Enum GetRequestedAction(
144     const std::string& flag_value) {
145   if (flag_value == "stop") {
146     return caffe::SolverAction::STOP;
147   }
148   if (flag_value == "snapshot") {
149     return caffe::SolverAction::SNAPSHOT;
150   }
151   if (flag_value == "none") {
152     return caffe::SolverAction::NONE;
153   }
154   LOG(FATAL) << "Invalid signal effect \""<< flag_value << "\" was specified";
155 }
156 
157 // Train / Finetune a model.
158 int train() {
159   CHECK_GT(FLAGS_solver.size(), 0) << "Need a solver definition to train.";
160   CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size())
161       << "Give a snapshot to resume training or weights to finetune "
162       "but not both.";
163 
164   caffe::SolverParameter solver_param;
165   caffe::ReadProtoFromTextFileOrDie(FLAGS_solver, &solver_param);
166 
167   // If the gpus flag is not provided, allow the mode and device to be set
168   // in the solver prototxt.
169   if (FLAGS_gpu.size() == 0
170       && solver_param.solver_mode() == caffe::SolverParameter_SolverMode_GPU) {
171       if (solver_param.has_device_id()) {
172           FLAGS_gpu = ""  +
173               boost::lexical_cast<string>(solver_param.device_id());
174       } else {  // Set default GPU if unspecified
175           FLAGS_gpu = "" + boost::lexical_cast<string>(0);
176       }
177   }
178 
179   vector<int> gpus;
180   get_gpus(&gpus);
181   if (gpus.size() == 0) {
182     LOG(INFO) << "Use CPU.";
183     Caffe::set_mode(Caffe::CPU);
184   } else {
185     ostringstream s;
186     for (int i = 0; i < gpus.size(); ++i) {
187       s << (i ? ", " : "") << gpus[i];
188     }
189     LOG(INFO) << "Using GPUs " << s.str();
190 
191     solver_param.set_device_id(gpus[0]);
192     Caffe::SetDevice(gpus[0]);
193     Caffe::set_mode(Caffe::GPU);
194     Caffe::set_solver_count(gpus.size());
195   }
196 
197   caffe::SignalHandler signal_handler(
198         GetRequestedAction(FLAGS_sigint_effect),
199         GetRequestedAction(FLAGS_sighup_effect));
200 
201   shared_ptr<caffe::Solver<float> >
202     solver(caffe::GetSolver<float>(solver_param));
203 
204   solver->SetActionFunction(signal_handler.GetActionFunction());
205 
206   if (FLAGS_snapshot.size()) {
207     LOG(INFO) << "Resuming from " << FLAGS_snapshot;
208     solver->Restore(FLAGS_snapshot.c_str());
209   } else if (FLAGS_weights.size()) {
210     CopyLayers(solver.get(), FLAGS_weights);
211   }
212 
213   if (gpus.size() > 1) {
214     caffe::P2PSync<float> sync(solver, NULL, solver->param());
215     sync.run(gpus);
216   } else {
217     LOG(INFO) << "Starting Optimization";
218     solver->Solve();
219   }
220   LOG(INFO) << "Optimization Done.";
221   return 0;
222 }
223 RegisterBrewFunction(train);
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 // Test: score a model.
249 int test() {
250   CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to score.";
251   CHECK_GT(FLAGS_weights.size(), 0) << "Need model weights to score.";
252 
253   // Set device id and mode
254   vector<int> gpus;
255   get_gpus(&gpus);
256   if (gpus.size() != 0) {
257     LOG(INFO) << "Use GPU with device ID " << gpus[0];
258     Caffe::SetDevice(gpus[0]);
259     Caffe::set_mode(Caffe::GPU);
260   } else {
261     LOG(INFO) << "Use CPU.";
262     Caffe::set_mode(Caffe::CPU);
263   }
264 
265   // Instantiate the caffe net.
266   Net<float> caffe_net(FLAGS_model, caffe::TEST);
267   caffe_net.CopyTrainedLayersFrom(FLAGS_weights);
268   LOG(INFO) << "Running for " << FLAGS_iterations << " iterations.";
269 
270   vector<Blob<float>* > bottom_vec;
271   vector<int> test_score_output_id;
272   vector<float> test_score;
273   // float loss = 0;
274   int nu = 0;
275   // int num = 0;
276   // int num2 = 0;
277 
278   const  int att_num = 43;
279   static int TP[att_num] = {0};
280   static int TN[att_num] = {0};
281   static int FP[att_num] = {0};
282   static int FN[att_num] = {0};
283 
284   for (int i = 0; i < FLAGS_iterations; ++i) {  // num of images;  test image:7600
285 
286     LOG(INFO) << "batch " << i << "/" << FLAGS_iterations << ", waiting...";
287  
288     float iter_loss;
289     const vector<Blob<float>*>& result =
290         caffe_net.Forward(bottom_vec, &iter_loss);  // outPut result 
291 
292     LOG(INFO) << "result.size: " << result.size() << " " << result[0]->count() << " " << result[1]->count() 
293               << " " << result[2]->count() ;
294 
295     const float* result_index = result[0]->cpu_data(); // index 
296     const float* result_score = result[1]->cpu_data(); // predict score;
297     const float* result_label = result[2]->cpu_data(); // Groundtruth label;
298 
299       for (int k = 0; k < att_num; ++k) {  // for 35 attributes 
300     
301         // const float index_        = result_index;
302         const float Predict_score = result_score[k];
303         const float GT_label      = result_label[k];
304 
305         float threshold_ = 0.4;
306         if ((Predict_score < threshold_) && (int(GT_label) == 0))
307           TN[k] = TN[k] + 1;
308         if ((Predict_score > threshold_) && (int(GT_label) == 0))
309           FP[k] = FP[k] + 1;
310         if ((Predict_score < threshold_) && (int(GT_label) == 1))
311           FN[k] = FN[k] + 1;
312         if ((Predict_score > threshold_) && (int(GT_label) == 1))
313           TP[k] = TP[k] + 1;
314 
315      
316       // write the predicted score into txt files
317       ofstream file("/home/wangxiao/Downloads/whole_benchmark/Sec_Batch_/sec_Batch_unlabel.txt",ios::app);
318       if(!file) return -1;
319       
320       if(nu < att_num){
321         file << Predict_score << " " ; 
322         nu++;
323       } else {               
324         nu = 1;    
325         file << endl;  
326         file << Predict_score << " " ;
327       }
328       file.close();
329 
330 
331       // // write the Index into txt files
332       // ofstream file2("/home/wangxiao/Downloads/caffe-master/wangxiao/bvlc_alexnet/43_attributes_index.txt",ios::app);
333       // if(!file2) return -1;
334       
335       // if(num < att_num){
336       //   file2 << index_ << " " ; 
337       //   num++;
338       // } else {               
339       //   num = 1;    
340       //   file2 << endl;  
341       //   file2 << index_ << " " ;
342       // }
343       // file2.close();
344 
345       // // write the GroundTruth Label into txt files
346       // ofstream file3("/home/wangxiao/Downloads/whole_benchmark/Unlabeled_data/Unlabeled_AnHui_label.txt",ios::app);
347       // if(!file3) return -1;
348       
349       // if(num2 < att_num){
350       //   file3 << GT_label << " " ; 
351       //   num2++;
352       // } else {               
353       //   num2 = 1;    
354       //   file3 << endl;  
355       //   file3 << GT_label << " " ;
356       // }
357       // file3.close();
358 
359 
360       }
361     }
362 
363     double aver_accuracy = 0;
364 
365     for (int k = 0; k < att_num; ++k){
366       aver_accuracy += 0.5*(double(TP[k])/(TP[k]+FN[k]) + double(TN[k])/(TN[k] + FP[k]));
367       LOG(INFO) << "Accuracy: " << k << " " 
368                 << 0.5*(double(TP[k])/(TP[k]+FN[k]) + double(TN[k])/(TN[k] + FP[k]));
369       LOG(INFO) << "TP = " << double(TP[k]);
370       LOG(INFO) << "FN = " << double(FN[k]);
371       LOG(INFO) << "FP = " << double(FP[k]);
372       LOG(INFO) << "TN = " << double(TN[k]);
373     }
374 
375       LOG(INFO) << "####################";
376       LOG(INFO) << " ";
377       LOG(INFO) << "Average_accuracy: " << aver_accuracy / att_num;
378       LOG(INFO) << " ";
379       LOG(INFO) << "####################";
380 
381       return 0;
382 }
383 
384 RegisterBrewFunction(test);
385 
386 
387 
388 
389  
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 // Time: benchmark the execution time of a model.
410 int time() {
411   CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to time.";
412 
413   // Set device id and mode
414   vector<int> gpus;
415   get_gpus(&gpus);
416   if (gpus.size() != 0) {
417     LOG(INFO) << "Use GPU with device ID " << gpus[0];
418     Caffe::SetDevice(gpus[0]);
419     Caffe::set_mode(Caffe::GPU);
420   } else {
421     LOG(INFO) << "Use CPU.";
422     Caffe::set_mode(Caffe::CPU);
423   }
424   // Instantiate the caffe net.
425   Net<float> caffe_net(FLAGS_model, caffe::TRAIN);
426 
427   // Do a clean forward and backward pass, so that memory allocation are done
428   // and future iterations will be more stable.
429   LOG(INFO) << "Performing Forward";
430   // Note that for the speed benchmark, we will assume that the network does
431   // not take any input blobs.
432   float initial_loss;
433   caffe_net.Forward(vector<Blob<float>*>(), &initial_loss);
434   LOG(INFO) << "Initial loss: " << initial_loss;
435   LOG(INFO) << "Performing Backward";
436   caffe_net.Backward();
437 
438   const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers();
439   const vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs();
440   const vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs();
441   const vector<vector<bool> >& bottom_need_backward =
442       caffe_net.bottom_need_backward();
443   LOG(INFO) << "*** Benchmark begins ***";
444   LOG(INFO) << "Testing for " << FLAGS_iterations << " iterations.";
445   Timer total_timer;
446   total_timer.Start();
447   Timer forward_timer;
448   Timer backward_timer;
449   Timer timer;
450   std::vector<double> forward_time_per_layer(layers.size(), 0.0);
451   std::vector<double> backward_time_per_layer(layers.size(), 0.0);
452   double forward_time = 0.0;
453   double backward_time = 0.0;
454   for (int j = 0; j < FLAGS_iterations; ++j) {
455     Timer iter_timer;
456     iter_timer.Start();
457     forward_timer.Start();
458     for (int i = 0; i < layers.size(); ++i) {
459       timer.Start();
460       layers[i]->Forward(bottom_vecs[i], top_vecs[i]);
461       forward_time_per_layer[i] += timer.MicroSeconds();
462     }
463     forward_time += forward_timer.MicroSeconds();
464     backward_timer.Start();
465     for (int i = layers.size() - 1; i >= 0; --i) {
466       timer.Start();
467       layers[i]->Backward(top_vecs[i], bottom_need_backward[i],
468                           bottom_vecs[i]);
469       backward_time_per_layer[i] += timer.MicroSeconds();
470     }
471     backward_time += backward_timer.MicroSeconds();
472     LOG(INFO) << "Iteration: " << j + 1 << " forward-backward time: "
473       << iter_timer.MilliSeconds() << " ms.";
474   }
475   LOG(INFO) << "Average time per layer: ";
476   for (int i = 0; i < layers.size(); ++i) {
477     const caffe::string& layername = layers[i]->layer_param().name();
478     LOG(INFO) << std::setfill(' ') << std::setw(10) << layername <<
479       "\tforward: " << forward_time_per_layer[i] / 1000 /
480       FLAGS_iterations << " ms.";
481     LOG(INFO) << std::setfill(' ') << std::setw(10) << layername  <<
482       "\tbackward: " << backward_time_per_layer[i] / 1000 /
483       FLAGS_iterations << " ms.";
484   }
485   total_timer.Stop();
486   LOG(INFO) << "Average Forward pass: " << forward_time / 1000 /
487     FLAGS_iterations << " ms.";
488   LOG(INFO) << "Average Backward pass: " << backward_time / 1000 /
489     FLAGS_iterations << " ms.";
490   LOG(INFO) << "Average Forward-Backward: " << total_timer.MilliSeconds() /
491     FLAGS_iterations << " ms.";
492   LOG(INFO) << "Total Time: " << total_timer.MilliSeconds() << " ms.";
493   LOG(INFO) << "*** Benchmark ends ***";
494   return 0;
495 }
496 RegisterBrewFunction(time);
497 
498 int main(int argc, char** argv) {
499   // Print output to stderr (while still logging).
500   FLAGS_alsologtostderr = 1;
501   // Usage message.
502   gflags::SetUsageMessage("command line brew\n"
503       "usage: caffe <command> <args>\n\n"
504       "commands:\n"
505       "  train           train or finetune a model\n"
506       "  test            score a model\n"
507       "  device_query    show GPU diagnostic information\n"
508       "  time            benchmark model execution time");
509   // Run tool or show usage.
510   caffe::GlobalInit(&argc, &argv);
511   if (argc == 2) {
512 #ifdef WITH_PYTHON_LAYER
513     try {
514 #endif
515       return GetBrewFunction(caffe::string(argv[1]))();
516 #ifdef WITH_PYTHON_LAYER
517     } catch (bp::error_already_set) {
518       PyErr_Print();
519       return 1;
520     }
521 #endif
522   } else {
523     gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/caffe");
524   }
525 }

 

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
20天前
|
并行计算 Shell TensorFlow
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
在使用TensorFlow-GPU训练MTCNN时,如果遇到“Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED”错误,通常是由于TensorFlow、CUDA和cuDNN版本不兼容或显存分配问题导致的,可以通过安装匹配的版本或在代码中设置动态显存分配来解决。
43 1
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
|
3月前
|
TensorFlow 算法框架/工具
【Tensorflow+Keras】tf.keras.backend.image_data_format()的解析与举例使用
介绍了TensorFlow和Keras中tf.keras.backend.image_data_format()函数的用法。
46 5
|
3月前
|
数据采集 存储 缓存
【Python-Tensorflow】tf.data.Dataset的解析与使用
本文详细介绍了TensorFlow中`tf.data.Dataset`类的使用,包括创建数据集的方法(如`from_generator()`、`from_tensor_slices()`、`from_tensors()`)、数据集函数(如`apply()`、`as_numpy_iterator()`、`batch()`、`cache()`等),以及如何通过这些函数进行高效的数据预处理和操作。
52 7
|
3月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow 2】解决tensorflow.python.framework.errors_impl.UnknownError: [_Derived_] Fail to find the...
本文解决了在使用TensorFlow 2.0和Keras API时,尝试使用双向LSTM (tf.keras.layers.Bidirectional) 出现的未知错误问题,并提供了三种解决该问题的方法。
46 3
|
3月前
|
TensorFlow 算法框架/工具 Python
【Tensorflow】Found unexpected keys that do not correspond to any Model output: dict_keys([‘model_outp
文章讨论了在使用Tensorflow 2.3时遇到的错误信息:"Found unexpected keys that do not correspond to any Model output: dict_keys(['model_output']). Expected: ['dense']"。这个问题通常发生在模型的输出层命名与model.fit_generator的生成器函数中返回的值的键不匹配时。
39 1
|
3月前
|
TensorFlow API 算法框架/工具
【Tensorflow+keras】解决使用model.load_weights时报错 ‘str‘ object has no attribute ‘decode‘
python 3.6,Tensorflow 2.0,在使用Tensorflow 的keras API,加载权重模型时,报错’str’ object has no attribute ‘decode’
48 0
|
6月前
|
SQL 数据库
一个很实用的造数工具—Spawner Data Generator
一个很实用的造数工具—Spawner Data Generator
196 0
|
6月前
yolov5--train.py --v5.0版本-2021-7-6更新
yolov5--train.py --v5.0版本-2021-7-6更新
50 0
|
API 数据格式
TensorFlow2._:model.summary() Output Shape为multiple解决方法
TensorFlow2._:model.summary() Output Shape为multiple解决方法
274 0
TensorFlow2._:model.summary() Output Shape为multiple解决方法
|
6月前
|
PyTorch 算法框架/工具
实战pytorch中utils.data.TensorDataset和utils.data.DataLoader工具
本文主要说明pytorch框架中utils.data.TensorDataset和utils.data.DataLoader两个工具类。
173 0