使用的yolov5为2021年6月23号的版本v5.0
train.py里面加了很多额外的功能,使得整体看起来比较复杂,其实核心部分主要就是 读取数据集,加载模型,训练中损失的计算。
这里简单的将train.py按每部分的功能进行了一些注释.
"""Train a YOLOv5 model on a custom dataset Usage: $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 """ import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' import argparse import logging import math import os import random import sys import time import warnings from copy import deepcopy from pathlib import Path from threading import Thread import numpy as np import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.optim.lr_scheduler as lr_scheduler import torch.utils.data import yaml from torch.cuda import amp from torch.nn.parallel import DistributedDataParallel as DDP from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm FILE = Path(__file__).absolute() sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path import test # for end-of-epoch mAP from models.experimental import attempt_load from models.yolo import Model from utils.autoanchor import check_anchors from utils.datasets import create_dataloader from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \ check_requirements, print_mutation, set_logging, one_cycle, colorstr from utils.google_utils import attempt_download from utils.loss import ComputeLoss from utils.plots import plot_images, plot_labels, plot_results, plot_evolution from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, de_parallel from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume logger = logging.getLogger(__name__) LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) def train(hyp, # path/to/hyp.yaml or hyp dictionary opt, device, ): save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, notest, nosave, workers, = \ opt.save_dir, opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ opt.resume, opt.notest, opt.nosave, opt.workers ''' 创建目录,设置模型、txt等保存的路径 ''' # Directories save_dir = Path(save_dir) wdir = save_dir / 'weights' wdir.mkdir(parents=True, exist_ok=True) # make dir last = wdir / 'last.pt' best = wdir / 'best.pt' results_file = save_dir / 'results.txt' ''' 读取hyp(超参数)配置文件 ''' # Hyperparameters if isinstance(hyp, str): with open(hyp) as f: hyp = yaml.safe_load(f) # load hyps dict logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) ''' 将本次运行的超参数(hyp),和选项操作(opt)给保存成yaml格式 ''' # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: yaml.safe_dump(hyp, f, sort_keys=False) with open(save_dir / 'opt.yaml', 'w') as f: yaml.safe_dump(vars(opt), f, sort_keys=False) ''' 配置:画图开关,cuda,种子,读取数据集相关的yaml文件 ''' # Configure plots = not evolve # create plots cuda = device.type != 'cpu' init_seeds(2 + RANK) with open(data) as f: data_dict = yaml.safe_load(f) # data dict ''' 加载相关日志功能:如tensorboard,logger,wandb ''' # Loggers loggers = {'wandb': None, 'tb': None} # loggers dict if RANK in [-1, 0]: # TensorBoard if not evolve: prefix = colorstr('tensorboard: ') logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") loggers['tb'] = SummaryWriter(str(save_dir)) # W&B opt.hyp = hyp # add hyperparameters run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None run_id = run_id if opt.resume else None # start fresh run if transfer learning wandb_logger = WandbLogger(opt, save_dir.stem, run_id, data_dict) loggers['wandb'] = wandb_logger.wandb if loggers['wandb']: data_dict = wandb_logger.data_dict weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # may update weights, epochs if resuming nc = 1 if single_cls else int(data_dict['nc']) # number of classes names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, data) # check is_coco = data.endswith('coco.yaml') and nc == 80 # COCO dataset ''' 加载模型 ''' # Model pretrained = weights.endswith('.pt') if pretrained: with torch_distributed_zero_first(RANK): weights = attempt_download(weights) # download if not found locally ckpt = torch.load(weights, map_location=device) # load checkpoint model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(RANK): check_dataset(data_dict) # check train_path = data_dict['train'] test_path = data_dict['val'] ''' 冰冻一些层,使得这些层在反向传播的时候不再更新权重,需要冻结的层,可以写在freeze列表中 ''' # Freeze freeze = [] # parameter names to freeze (full or partial) for k, v in model.named_parameters(): v.requires_grad = True # train all layers if any(x in k for x in freeze): print('freezing %s' % k) v.requires_grad = False ''' nbs为名义批次,比如实际批次为16,那么64/16=4,每4次迭代,才进行一次反向传播更新权重,可以节约显存. ''' # Optimizer nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") ''' 设置优化器,权重weight使用了正则化,偏置bias则不使用正则化 ''' pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): pg2.append(v.bias) # biases if isinstance(v, nn.BatchNorm2d): pg0.append(v.weight) # no decay elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): pg1.append(v.weight) # apply decay if opt.adam: optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum else: optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR ''' 设置学习率策略:两者可供选择,线性学习率和余弦退火学习率 ''' if opt.linear_lr: lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear else: lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) ''' 设置ema(指数移动平均):目的是为了收敛的曲线更加平滑 ''' # EMA ema = ModelEMA(model) if RANK in [-1, 0] else None ''' 继续接着训练,需要加载优化器,ema模型,训练结果txt,周期 ''' # Resume start_epoch, best_fitness = 0, 0.0 if pretrained: # Optimizer if ckpt['optimizer'] is not None: optimizer.load_state_dict(ckpt['optimizer']) best_fitness = ckpt['best_fitness'] # EMA if ema and ckpt.get('ema'): ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) ema.updates = ckpt['updates'] # Results if ckpt.get('training_results') is not None: results_file.write_text(ckpt['training_results']) # write results.txt # Epochs start_epoch = ckpt['epoch'] + 1 if resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs del ckpt, state_dict ''' 模型默认的下采样倍率model.stride: [8,16,32] gs代表模型下采样的最大步长: 后续为了保证输入模型的图片宽高是最大步长的整数倍 nl代表模型输出的尺度,默认为3个尺度, 分别下采样8倍,16倍,32倍. nl=3 imgsz, imgsz_test代表训练和测试的图片大小,比如opt.img_size=[640,480],那么训练图片的最大边为640,测试图片最大边为480 如果opt.img_size=[640],那么自动补成[640,640] 当然比如这边imgsz是640,那么训练的图片是640*640吗,不一定,具体看你怎么设置,默认是padding成正方形进行训练的. ''' # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples ''' 多卡训练 ''' # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: logging.warning('DP not recommended, instead use torch.distributed.run for best DDP Multi-GPU results.\n' 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') model = torch.nn.DataParallel(model) # SyncBatchNorm if opt.sync_bn and cuda and RANK != -1: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) logger.info('Using SyncBatchNorm()') ''' 加载数据集 ''' # Trainloader dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, workers=workers, image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) ''' 检验加载的数据集是否正确: 利用数据集中的最大类别<nc ''' mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1) # Process 0 if RANK in [-1, 0]: testloader = create_dataloader(test_path, imgsz_test, batch_size // WORLD_SIZE * 2, gs, single_cls, hyp=hyp, cache=opt.cache_images and not notest, rect=True, rank=-1, workers=workers, pad=0.5, prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir, loggers) if loggers['tb']: loggers['tb'].add_histogram('classes', c, 0) # TensorBoard # Anchors if not opt.noautoanchor: check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) model.half().float() # pre-reduce anchor precision # DDP mode if cuda and RANK != -1: model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698 find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules())) ''' 模型参数的一些调整 ''' # Model parameters hyp['box'] *= 3. / nl # scale to layers hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers hyp['label_smoothing'] = opt.label_smoothing model.nc = nc # attach number of classes to model model.hyp = hyp # attach hyperparameters to model model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou) model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights 根据类别获得每个类别的权重 model.names = names ''' 开始训练 ''' # Start training t0 = time.time() nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training maps = np.zeros(nc) # mAP per class results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss = ComputeLoss(model) # init loss class logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n' f'Using {dataloader.num_workers} dataloader workers\n' f'Logging results to {save_dir}\n' f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ model.train() # Update image weights (optional) if opt.image_weights: # Generate indices if RANK in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if RANK != -1: indices = (torch.tensor(dataset.indices) if RANK == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if RANK != 0: dataset.indices = indices.cpu().numpy() # Update mosaic border # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) # dataset.mosaic_border = [b - imgsz, -b] # height, width borders mloss = torch.zeros(4, device=device) # mean losses if RANK != -1: dataloader.sampler.set_epoch(epoch) pbar = enumerate(dataloader) logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- # ni用来记录当前的迭代次数,如果小于nw(warm up需要的迭代次数),就进行wam uo ni = i + nb * epoch # number integrated batches (since train start) imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0 # Warmup if ni <= nw: xi = [0, nw] # x interp # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) # 根据当前的warm up进度进行插值获取accumulate的值 for j, x in enumerate(optimizer.param_groups): # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])#根据插值获取学习率 if 'momentum' in x: x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) #根据插值获取动量 # Multi-scale if opt.multi_scale: sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size sf = sz / max(imgs.shape[2:]) # scale factor if sf != 1: ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) # Forward with amp.autocast(enabled=cuda): pred = model(imgs) # forward loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size if RANK != -1: loss *= WORLD_SIZE # gradient averaged between devices in DDP mode if opt.quad: loss *= 4. # Backward scaler.scale(loss).backward() # Optimize if ni % accumulate == 0: scaler.step(optimizer) # optimizer.step scaler.update() optimizer.zero_grad() if ema: ema.update(model) # Print if RANK in [-1, 0]: mloss = (mloss * i + loss_items) / (i + 1) # update mean losses mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB) s = ('%10s' * 2 + '%10.4g' * 6) % ( f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]) pbar.set_description(s) # Plot if plots and ni < 3: f = save_dir / f'train_batch{ni}.jpg' # filename Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() if loggers['tb'] and ni == 0: # TensorBoard with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress jit trace warning loggers['tb'].add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) elif plots and ni == 10 and loggers['wandb']: wandb_logger.log({'Mosaics': [loggers['wandb'].Image(str(x), caption=x.name) for x in save_dir.glob('train*.jpg') if x.exists()]}) # end batch ------------------------------------------------------------------------------------------------ # Scheduler lr = [x['lr'] for x in optimizer.param_groups] # for loggers scheduler.step() # DDP process 0 or single-GPU if RANK in [-1, 0]: # mAP ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights']) final_epoch = epoch + 1 == epochs if not notest or final_epoch: # Calculate mAP wandb_logger.current_epoch = epoch + 1 results, maps, _ = test.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz_test, model=ema.ema, single_cls=single_cls, dataloader=testloader, save_dir=save_dir, save_json=is_coco and final_epoch, verbose=nc < 50 and final_epoch, plots=plots and final_epoch, wandb_logger=wandb_logger, compute_loss=compute_loss) # Write with open(results_file, 'a') as f: f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss # Log tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss 'x/lr0', 'x/lr1', 'x/lr2'] # params for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags): if loggers['tb']: loggers['tb'].add_scalar(tag, x, epoch) # TensorBoard if loggers['wandb']: wandb_logger.log({tag: x}) # W&B # Update best mAP fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] if fi > best_fitness: best_fitness = fi wandb_logger.end_epoch(best_result=best_fitness == fi) # Save model if (not nosave) or (final_epoch and not evolve): # if save ckpt = {'epoch': epoch, 'best_fitness': best_fitness, 'training_results': results_file.read_text(), 'model': deepcopy(de_parallel(model)).half(), 'ema': deepcopy(ema.ema).half(), 'updates': ema.updates, 'optimizer': optimizer.state_dict(), 'wandb_id': wandb_logger.wandb_run.id if loggers['wandb'] else None} # Save last, best and delete torch.save(ckpt, last) if best_fitness == fi: torch.save(ckpt, best) if loggers['wandb']: if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1: wandb_logger.log_model(last.parent, opt, epoch, fi, best_model=best_fitness == fi) del ckpt # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n') if plots: plot_results(save_dir=save_dir) # save as results.png if loggers['wandb']: files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]] wandb_logger.log({"Results": [loggers['wandb'].Image(str(save_dir / f), caption=f) for f in files if (save_dir / f).exists()]}) if not evolve: if is_coco: # COCO dataset for m in [last, best] if best.exists() else [last]: # speed, mAP tests results, _, _ = test.run(data, batch_size=batch_size // WORLD_SIZE * 2, imgsz=imgsz_test, conf_thres=0.001, iou_thres=0.7, model=attempt_load(m, device).half(), single_cls=single_cls, dataloader=testloader, save_dir=save_dir, save_json=True, plots=False) # Strip optimizers for f in last, best: if f.exists(): strip_optimizer(f) # strip optimizers if loggers['wandb']: # Log the stripped model loggers['wandb'].log_artifact(str(best if best.exists() else last), type='model', name='run_' + wandb_logger.wandb_run.id + '_model', aliases=['latest', 'best', 'stripped']) wandb_logger.finish_run() torch.cuda.empty_cache() return results def parse_opt(known=False): parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='', help='model.yaml path') parser.add_argument('--data', type=str, default='data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') parser.add_argument('--notest', action='store_true', help='only test final epoch') parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check') parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters') parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') parser.add_argument('--cache-images', action='store_true', help='cache images for faster training') parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer') parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers') parser.add_argument('--project', default='runs/train', help='save to project/name') parser.add_argument('--entity', default=None, help='W&B entity') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--quad', action='store_true', help='quad dataloader') parser.add_argument('--linear-lr', action='store_true', help='linear LR') parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table') parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B') parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch') parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used') parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') opt = parser.parse_known_args()[0] if known else parser.parse_args() return opt def main(opt): set_logging(RANK) if RANK in [-1, 0]: print(colorstr('train: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) check_git_status() check_requirements(exclude=['thop']) # Resume wandb_run = check_wandb_resume(opt) if opt.resume and not wandb_run: # resume an interrupted run ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' with open(Path(ckpt).parent.parent / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.safe_load(f)) # replace opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate logger.info('Resuming training from %s' % ckpt) else: # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test) opt.name = 'evolve' if opt.evolve else opt.name opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve)) # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: from datetime import timedelta assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=60)) assert opt.batch_size % WORLD_SIZE == 0, '--batch-size must be multiple of CUDA device count' assert not opt.image_weights, '--image-weights argument is not compatible with DDP training' #训练模式 # Train if not opt.evolve: train(opt.hyp, opt, device) if WORLD_SIZE > 1 and RANK == 0: _ = [print('Destroying process group... ', end=''), dist.destroy_process_group(), print('Done.')] # 进化超参数 # Evolve hyperparameters (optional) else: # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr 'box': (1, 0.02, 0.2), # box loss gain 'cls': (1, 0.2, 4.0), # cls loss gain 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight 'iou_t': (0, 0.1, 0.7), # IoU training threshold 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) 'scale': (1, 0.0, 0.9), # image scale (+/- gain) 'shear': (1, 0.0, 10.0), # image shear (+/- deg) 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) 'mosaic': (1, 0.0, 1.0), # image mixup (probability) 'mixup': (1, 0.0, 1.0)} # image mixup (probability) with open(opt.hyp) as f: hyp = yaml.safe_load(f) # load hyps dict assert LOCAL_RANK == -1, 'DDP mode not implemented for --evolve' opt.notest, opt.nosave = True, True # only test/save final epoch # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here if opt.bucket: os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists for _ in range(300): # generations to evolve if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate # Select parent(s) parent = 'single' # parent selection method: 'single' or 'weighted' x = np.loadtxt('evolve.txt', ndmin=2) n = min(5, len(x)) # number of previous results to consider x = x[np.argsort(-fitness(x))][:n] # top n mutations w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) if parent == 'single' or len(x) == 1: # x = x[random.randint(0, n - 1)] # random selection x = x[random.choices(range(n), weights=w)[0]] # weighted selection elif parent == 'weighted': x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination # Mutate mp, s = 0.8, 0.2 # mutation probability, sigma npr = np.random npr.seed(int(time.time())) g = np.array([x[0] for x in meta.values()]) # gains 0-1 ng = len(meta) v = np.ones(ng) while all(v == 1): # mutate until a change occurs (prevent duplicates) v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) hyp[k] = float(x[i + 7] * v[i]) # mutate # Constrain to limits for k, v in meta.items(): hyp[k] = max(hyp[k], v[1]) # lower limit hyp[k] = min(hyp[k], v[2]) # upper limit hyp[k] = round(hyp[k], 5) # significant digits # Train mutation results = train(hyp.copy(), opt, device) # Write mutation results print_mutation(hyp.copy(), results, yaml_file, opt.bucket) # Plot results plot_evolution(yaml_file) print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n' f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}') def run(**kwargs): # Usage: import train; train.run(imgsz=320, weights='yolov5m.pt') opt = parse_opt(True) for k, v in kwargs.items(): setattr(opt, k, v) main(opt) if __name__ == "__main__": opt = parse_opt() main(opt)