Writing a Kernel in C++

简介: Writing-a-Kernel-in-C++ Write a Kernel in C++ Tools Examples will show hot to use :- GJGPP - a complete 32-bit C/C++ development system for INtel 80386(and higher) PCs running DOS.

 

Writing-a-Kernel-in-C++


Write a Kernel in C++


Tools

Examples will show hot to use :-

  • GJGPP - a complete 32-bit C/C++ development system for INtel 80386(and higher) PCs running DOS.
  • NASM - The Netwide Assembler Project - Open sourced 80x86 assembler

Source code listed on this site has only been tested on djgpp version 2.03 and nasm version 0.98.08, running on the Windows XP environment. Some of the techniques discussed here will not work on other versions of gcc. I will try to give a warning for compiler specific implementations.

Assumptions

I assume that this is not your first attempt at writing a Kernel.

I assume you are already proficient in the programming language C++.

I assume you have already written a boot loader, or that you know how to use a standard one like GRUB. If you do use grub, you will need to add the necessary code to the assembler code below.

Part 1: Introduction, "Hello, world!" kernel - C++ with no Run-Time support Introduction

The aim of these tutorials is to show you how to implement a simple kernel written in C++. We will need a small amount of assembler (to initialise our kernel), and a smidgen of C code (to provide some C++ runtime support). The end result, will be the typical "Hello, world!" example.

Part 1, will introduce the Video driver, with no Run-Time support. Part 2, will help add some run-time support, enabling global/static objects. Part 3, will demonstrate a very simple implementation of std::cout (Standard output stream in the C++ Standard lib).

The end result will be this (taken from the first example in Accelerated C++, Andrew Koenig and BarBara E. Moo) :-

//a small C++ kernel
#include <iostream>

int main()
{
    std:cout << "Hello, world!" << std::endl;
    return 0;
}

Part 4, will set-up a global descriptor table, and an interrupt descriptor table. With some encapsulation in C++. Part 5, will introduce a simple interrupt driven Keyboard driver. Part 6, will demonstrate a very simple implementation of std::string Part 7, will demonstrate a very simple implementation of std::cin.

The end result wil be this (taken from the second example in Accelerated C++, Andrew Koenig and Barbara E. Moo) :-

//a small C++ kernel
#include <iostream>
#include <string>

int main()
{
    //ask for the person's name
    std::cout << "Please enter your first name: ";
    //read name
    std::string name;   //define name
    std::cin >> name;   //read into name

    //write a greeting
    std::cout << "Hello, " << name << "!" << std::endl;
    return 0;
}

As you can see, there is more work involved to get the C++ kernel up and running, at least compared to a C kernel, but hopefully the end result will be a solid base onto which to build a more flexible object oriented kernel.

Knowing our limits

Quoting from the creator of C++, Bjarne Stroustrup's book "The C++ programming language third edition (section 1.3.1)",

"Except for the new, delete, typeid, dynamic_cast, and throw operators and the try-block, individual C++ expressions and statements need no run-time support."

The features which need Run-TIme support full into 3 categories :-

  • Built in functions (new, delete),
  • Run Time Type Information (typeid, dynamic_cast),
  • And Exception handling (throw, try-block).

However, Stroustrup was refering to C++ code on an operating system which has an implementation of the C++ standard library. So this must also be implemented or ported for use in the kernel.

The good news in we can disable these features with most compilers, and everything will be ok as long as we don't use those off-limit expressions and statements. When the time comes when we want to use them, we have to add our own support code and link it to our kernel.

example of how to disable these in gxx, the win32 g++ compiler.

gcc -c *.cpp -ffreestanding -nostdlib -fno-builtin -fno-rtti -fno-exceptions

offsite link : Options Controlling C++ Dialect

The bad news is there is no standard way that built in functions, RTTI, or EH have been implemented into the compiler. Even different versions of the same compiler may do things differently. In part2, I'll explain in more detail how we can tackle this problem, but for now we will just disable them all.

When we disable the run-time support in the compiler, the compiler will omit several important functions. The compiler normally makes a call to a function before calling main(), and another after main() returns. Typically these two functions will be called _main() and _atexit(). Amongst other operations, they normally handle the calling of global / static object constructors and deconstructors. So global / static objects are also off-limits until we add the necessary support code for this.

To summarise, a list of the off-limit C++ features (without adding your own support code) :-

  • Built in functions,
  • Run Time Type Information,
  • Exception handling,
  • The C++ standard library (including the C library of course),
  • And global / static objects.

The code

Lets start with the ASM code which will call our kernel's main function. Later this code will also make calls to our run-time support, _main() and _atexit().

;Loader.asm
[BITS 32] ; protected mode

[global start]
[extern _main] ; this is in our C++ code

start:
call _main ; call int main(void) from our C++ code
cli ; interrupts could disturb the halt
hlt ; halt the CPU

Now in our C++ Kernel, we are going to create a class Video, which will act as a simple video driver. This is the entire code for the kernel.

//Video.h
#ifndef VIDEO_H
#define VIDEO_H     //so we don't get multiple definitions of VIdeo

class Video
{
public:
    Video();
    ~Video();
    void clear();
    void write(char *cp);
    void put(char c);
private:
    unsigned short *videomem;   //pointer to video memory
    unsigned int off;           //offset, used like a y cord
    unsigned int pos;           //position, used like x cord

}; //don't forget the semicolon!

#endif
//Video.cpp

Video:Video()
{
    pos=0;  off=0; 
    videomem = (unsigned short*) 0xb8000;
}

Video::~Video() {}

void Video::clear()
{
    unsigned int i;

    for(i=0; i<(80*25); i++)
    {
        videomem[i] = (unsigned char) ' ' | 0x0700;
    }
    pos=0; off=0;
}

void Video::write(char *cp)
{
    char *str = cp, *ch;

    for(ch=str; *ch; ch++)
    {
        put(*ch);
    }
}

void Video::put(char c)
{
    if(pos>=80)
    {
        pos=0;
        off += 80;
    }

    if(off>=(80*20))
    {
        clear(); //should scroll the screen, but for now, just clear
    }

    videomem[off + pos] = (unsigned char) c | 0x0700;
    pos++;
}
//Kernel.cpp
#include "Video.h"

int main(void)
{
    Video vid; //local, (global variables need some Run-Time support code)

    vid.write("Hello, world!");
}

Compiling

Video.cpp and Kernel.cpp need to be compiled with a C++ compiler, remembering to disable the above mentioned C++ features. The output from your C++ compiler should be the object files Video.o and Kernel.o. Loader.asm also needs to be assembled with an assembler. The output from your assembler should be the object file Loader.o.

An example of how to compile using DJGPP gxx and NASM.

gxx -c Video.cpp -ffreestanding -nostdlib -fno-builtin -fno-rtti -fno-exceptions
gxx -c Kernel.cpp -ffreestanding -nostdlib -fno-builting -fno-rtti -fno-exceptions
nasm -f aout Loader.asm -o Loader.o

Linking

Now we must link our object files into a flat binary which we shall call Kernel.bin.

I recommend suing a linker script, we will be making use of the linker script in part2. Here is an example of a linker script for LD.

/* Link.ld */
OUTPUT_FORMAT("binary")
ENTRY(start)
SECTIONS
{
    .text 0x100000 :
    {
        code = .; _code = .; __code = .;
        *(.text)
        . = ALIGN(4096);
    }

    .data :
    {
        data = .; _data = .; __data = .;
        *(.data)
        . = ALIGN(4096);
    }

    .bss :
    {
        bss = .; _bss = .; __bss = .;
        *(.bss)
        . = ALIGN(4096);
    }

    end = .; _end = .; __end = .;
}

Now we can use the linker script with LD,

ld -T Link.ld -o Kernel.bin Loader.o Kernel.o Video.o

Conclusion

Hopefully your C++ Kerrnel should have compiled and linked without any errors. Congratulations.

Part2: Introduction, "Hello, world!" kernel - C++ with Global / Static Object support

::Warning - Compiler Specific::

Solution 1 - .ctor and .dtor sections

This method will only work for compilers which add two sections to the object files, the .ctor and .dtor section. Here are 4 steps to find out if you can use this solution :-

Step 1 - Move the Video object from a local to global scope.

//Kernel.cpp
#include "Video.h"

Video vid; //global variable

int main(void)
{
    vid.write("Hello, world!");
}

Step 2 - Compile Kernel.cpp for a freestanding environment, without run-time support, or standard library.

gxx -c Kernel.cpp -ffreestanding -nostdlib -fno-builtin -fno-rtti -fno-exceptions

Step 3 - Use the object dump tool to display contents of the sections.

objdump -h Kernel.o > Kernel.dis

Redirects the output of objdump to a file named Kernel.dis

Step 4 - Open the Kernel.dis with a text editor (Notepad, WordPad, my preferred choice is TextPad)

Look for something like this in the file
7 .ctors 00000004 000000f4 000000f4 00000294 2**2
CONTENTS, ALLOC, LOAD, RELOC, DATA
8 .dtors 00000004 000000f8 000000f8 00000298 2**2
CONTENTS, ALLOC, LOAD, RELOC, DATA
If they are present, you can use solution 1.

The code

We are now going to implement _main() and _atexit(). In our linker script we are going to create a list of pointers in the .ctor section, and a list of pointers in the .dtor section. Which are the Constructor lists, and Deconstructor lists repectively.

Note - THe list is not sorted into order of precedence, in a complex hierachy the constructors could be called in an incorrect order!

//Support.c
void _main()
{
    //Walk and call the constructors in the ctor_list

    //the ctor list is defined in the linker script
    extern void (*_CTOR_LIST__)();

    //hold current constructor in list
    void (**constructor)() = &_CTOR_LIST__;

    //the first int is the number of constructors
    int total = *(int *)constructor;

    //increment to first constructor
    constructor++;

    while(total)
    {
        (*constructor)();
        total--;
        constructor++;
    }
}

void _atexit()
{
    //Walk and call the deconstructors in the dtor_list

    //the dtor list is defined in the linker script
    extern void (*_DTOR_LIST__)();

    //hold current deconstructor in list
    void (**deconstructor)() = &_DTOR_LIST__;

    //the first int is the number of deconstructors
    int total = *(int *)deconstructor;

    //increment to first deconstructor
    deconstructor++;

    while(total)
    {
        (*deconstructor)();
        total--;
        deconstructor++;
    }
}
;Loader.asm

[BITS 32] ;protected mode

[global start]
[extern _main]  ;this is in our C++ code
[extern __main] ;this is in our C support code
[extern __atexit];tihs is in our C support code

start:
call __main
call _main ;call int main(void) from our C++ code
call __atexit
cli ;interrupts could disturb the halt
hlt ;halt the CPU
/* Link.ld */
OUTPUT_FORMAT("binary")
ENTRY(start)
SECTIONS
{
    .text 0x100000 :
    {
        code = .; _code = .; __code = .;
        *(.text)
        . = ALIGN(4096);
    }

    .data :
    {
        __CTOR_LIST__ = .;
        LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)
        *(.ctors)
        LONG(0)
        __CTOR_END__ = .;
        __DTOR_LIST__ = .;
        LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)
        *(.dtors)
        LONG(0)
        __DTOR_END__ = .;

        data = .; _data = .; __data = .;
        *(.data);
        . = ALIGN(4096);
    }

    .bss :
    {
        bss = .; _bss = .; __bss = .;
        *(.bss)
        . = ALIGN(4096);
        end = .; _end = .; __end = .;
    }
}

Conclusion

Compile and link as in Part 1. You will now be able to use Global / Static objects in your C++ Kernel. In Part 3 we will look at a simple implementation of Class OStream which resides in namespace std. We will use a global instance of OStream, cout.

All trademarks and/or registered trademarks on this site are property of their respective owners. Use this site and its contents at your own risk...

目录
相关文章
|
1天前
|
云安全 人工智能 自然语言处理
|
6天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
314 116
|
8天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
610 53
Meta SAM3开源:让图像分割,听懂你的话
|
21天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
5天前
|
人工智能 Java API
Java 正式进入 Agentic AI 时代:Spring AI Alibaba 1.1 发布背后的技术演进
Spring AI Alibaba 1.1 正式发布,提供极简方式构建企业级AI智能体。基于ReactAgent核心,支持多智能体协作、上下文工程与生产级管控,助力开发者快速打造可靠、可扩展的智能应用。
|
4天前
|
弹性计算 人工智能 Cloud Native
阿里云无门槛和有门槛优惠券解析:学生券,满减券,补贴券等优惠券领取与使用介绍
为了回馈用户与助力更多用户节省上云成本,阿里云会经常推出各种优惠券相关的活动,包括无门槛优惠券和有门槛优惠券。本文将详细介绍阿里云无门槛优惠券的领取与使用方式,同时也会概述几种常见的有门槛优惠券,帮助用户更好地利用这些优惠,降低云服务的成本。
270 132
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
AgentEvolver:让智能体系统学会「自我进化」
AgentEvolver 是一个自进化智能体系统,通过自我任务生成、经验导航与反思归因三大机制,推动AI从“被动执行”迈向“主动学习”。它显著提升强化学习效率,在更少参数下实现更强性能,助力智能体持续自我迭代。开源地址:https://github.com/modelscope/AgentEvolver
423 29
|
15天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
728 224

热门文章

最新文章