【caffe】三种文件类别:solver,model和weights

简介: @tags: caffe 文件类别solver文件是一堆超参数,比如迭代次数,是否用GPU,多少次迭代暂存一次训练所得参数,动量项,权重衰减(即正则化参数),基本的learning rate,多少次迭代打印一次loss,以及网络结构描述文件(即model文件)存储位置,等等比如: lenet_solver.prototxtmodel文件也有一些参数,指定了深度卷积网的结构,包括每一层各个参数,以及训练输入的数据存放位置等。

@tags: caffe 文件类别

solver文件

是一堆超参数,比如迭代次数,是否用GPU,多少次迭代暂存一次训练所得参数,动量项,权重衰减(即正则化参数),基本的learning rate,多少次迭代打印一次loss,以及网络结构描述文件(即model文件)存储位置,等等

比如: lenet_solver.prototxt

model文件

也有一些参数,指定了深度卷积网的结构,包括每一层各个参数,以及训练输入的数据存放位置等。

比如: lenet_train_test.prototxt

weights文件

权值存储文件,训练所得到的权值参数都存在这个文件中

比如:lenet_iter_10000.caffemodel

目录
相关文章
|
6月前
|
机器学习/深度学习 资源调度 监控
PyTorch使用Tricks:Dropout,R-Dropout和Multi-Sample Dropout等 !!
PyTorch使用Tricks:Dropout,R-Dropout和Multi-Sample Dropout等 !!
90 0
|
5月前
|
PyTorch 算法框架/工具
【chat-gpt问答记录】torch.tensor和torch.Tensor什么区别?
【chat-gpt问答记录】torch.tensor和torch.Tensor什么区别?
128 2
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。
45 3
|
3月前
|
API 算法框架/工具
【Tensorflow+keras】使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
使用keras API保存模型权重、plot画loss损失函数、保存训练loss值
30 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
模型训练(Model Training)
模型训练(Model Training)是指使用数据集对模型进行训练,使其能够从数据中学习到特征和模式,进而完成特定的任务。在深度学习领域,通常使用反向传播算法来训练模型,其中模型会根据数据集中的输入和输出,不断更新其参数,以最小化损失函数。
491 1
|
6月前
|
机器学习/深度学习 自然语言处理 PyTorch
Model Inference
模型推理(Model Inference)是指使用已经训练好的机器学习模型来对新数据进行预测或分类的过程。模型推理是机器学习中的一个重要环节,其目的是利用训练好的模型对新数据进行预测或分类,从而得到结果。
318 1
|
机器学习/深度学习 并行计算 PyTorch
【PyTorch】Training Model
【PyTorch】Training Model
89 0
|
数据采集 PyTorch 数据处理
从DETR backbone 的NestedTensor 到DataLoader, Sampler,collate_fn,再到DETR transformer
从DETR backbone 的NestedTensor 到DataLoader, Sampler,collate_fn,再到DETR transformer
231 0
|
存储 测试技术
测试模型时,为什么要with torch.no_grad(),为什么要model.eval(),如何使用with torch.no_grad(),model.eval(),同时使用还是只用其中之一
在测试模型时,我们通常使用with torch.no_grad()和model.eval()这两个方法来确保模型在评估过程中的正确性和效率。
966 0
|
机器学习/深度学习 PyTorch 算法框架/工具
model是一个模型网络,model.eval() 、model.train()是什么意思?
在PyTorch中,model.eval()是一个模型对象的方法,用于将模型设置为评估模式。当模型处于评估模式时,它会在前向传递期间禁用某些操作,如丢弃(dropout)和批量归一化(batch normalization),以确保模型的输出稳定性。
935 0