linux共享内存

简介: 共享内存共享内存是进程间通信中最简单的方式之一。共享内存允许两个或更多进程访问同一块内存,就如同 malloc() 函数向不同进程返回了指向同一个物理内存区域的指针。
共享内存共享内存是 进程间通信中最简单的方式之一。共享内存允许两个或更多进程访问同一块内存,就如同 malloc() 函数向不同进程返回了指向同一个 物理内存区域的 指针。当一个进程改变了这块地址中的内容的时候,其它进程都会察觉到这个更改。

快速本地通信

  因为所有进程共享同一块内存,共享内存在各种进程间通信方式中具有最高的效率。访问共享内存区域和访问进程独有的内存区域一样快,并不需要通过 系统调用或者其它需要切入 内核的过程来完成。同时它也避免了对数据的各种不必要的复制。
  因为系统内核没有对访问共享内存进行同步,您必须提供自己的同步措施。例如,在数据被写入之前不允许进程从共享内存中读取信息、不允许两个进程同时向同一个共享内存地址写入数据等。解决这些问题的常用方法是通过使用 信号量进行同步。不过,我们的程序中只有一个进程访问了共享内存,因此在集中展示了共享内存机制的同时,我们避免了让代码被同步逻辑搞得混乱不堪。

内存模型

  要使用一块共享内存,进程必须首先分配它。随后需要访问这个共享内存块的每一个进程都必须将这个共享内存绑定到自己的 地址空间中。当完成通信之后,所有进程都将脱离共享内存,并且由一个进程释放该共享内存块。
  理解 Linux 系统内存模型可以有助于解释这个绑定的过程。在 Linux 系统中,每个进程的 虚拟内存是被分为许多页面的。这些内存页面中包含了实际的数据。每个进程都会维护一个从 内存地址到虚拟内存页面之间的映射关系。尽管每个进程都有自己的内存地址,不同的进程可以同时将同一个内存页面映射到自己的地址空间中,从而达到共享内存的目的。
  分配一个新的共享内存块会创建新的内存页面。因为所有进程都希望共享对同一块内存的访问,只应由一个进程创建一块新的共享内存。再次分配一块已经存在的内存块不会创建新的页面,而只是会返回一个标识该内存块的 标识符。一个进程如需使用这个共享内存块,则首先需要将它绑定到自己的地址空间中。这样会创建一个从进程本身虚拟地址到共享页面的映射关系。当对共享内存的使用结束之后,这个映射关系将被删除。当再也没有进程需要使用这个共享内存块的时候,必须有一个(且只能是一个)进程负责释放这个被共享的内存页面。
  所有共享内存块的大小都必须是系统页面大小的整数倍。系统页面大小指的是系统中单个内存页面包含的字节数。在 Linux 系统中,内存页面大小是4KB,不过您仍然应该通过调用 getpagesize 获取这个值。

分配

  进程通过调用shmget(Shared Memory GET,获取共享内存)来分配一个共享内存块。
  该函数的第一个参数是一个用来标识共享内存块的键值。彼此无关的进程可以通过指定同一个键以获取对同一个共享内存块的访问。不幸的是,其它程序也可能挑选了同样的特定值作为自己分配共享内存的键值,从而产生冲突。用特殊 常量IPC_PRIVATE作为键值可以保证系统建立一个全新的共享内存块。
  该函数的第二个参数指定了所申请的内存块的大小。因为这些内存块是以页面为单位进行分配的,实际分配的内存块大小将被扩大到页面大小的整数倍。
  第三个参数是一组标志,通过特定常量的按位或操作来shmget。这些特定常量包括:
  IPC_CREAT:这个标志表示应创建一个新的共享内存块。通过指定这个标志,我们可以创建一个具有指定键值的新共享内存块。
  IPC_EXCL:这个标志只能与 IPC_CREAT 同时使用。当指定这个标志的时候,如果已有一个具有这个键值的共享内存块存在,则shmget会调用失败。也就是说,这个标志将使线程获得一个“独有”的共享内存块。如果没有指定这个标志而系统中存在一个具有相同键值的共享内存块,shmget会返回这个已经建立的共享内存块,而不是重新创建一个。
  模式标志:这个值由9个位组成,分别表示属主、属组和其它用户对该内存块的访问权限。其中表示执行权限的位将被忽略。指明访问权限的一个简单办法是利用<sys/stat.h>中指定,并且在手册页第二节stat条目中说明了的常量指定。例如,S_IRUSR和S_IWUSR分别指定了该内存块属主的读写权限,而 S_IROTH和S_IWOTH则指定了其它用户的读写权限。 下面例子中shmget函数创建了一个新的共享内存块(当shm_key已被占用时则获取对一个已经存在共享内存块的访问),且只有属主对该内存块具有读写权限,其它用户不可读写。
  int segment_id = shmget (shm_key, getpagesize (), IPC_CREAT | S_IRUSR| S_IWUSR ); 如果调用成功,shmget将返回一个共享内存标识符。如果该共享内存块已经存在,系统会检查访问权限,同时会检查该内存块是否被标记为等待摧毁状态。

绑定和脱离

  要让一个进程获取对一块共享内存的访问,这个进程必须先调用 shmat(SHared Memory Attach,绑定到共享内存)。将 shmget 返回的共享内存 标识符 SHMID 传递给这个函数作为第一个参数。该函数的第二个参数是一个 指针,指向您希望用于映射该共享内存块的进程 内存地址;如果您指定NULL则Linux会自动选择一个合适的地址用于映射。第三个参数是一个标志位,包含了以下选项:
  SHM_RND表示第二个参数指定的地址应被向下靠拢到内存页面大小的整数倍。如果您不指定这个标志,您将不得不在调用shmat的时候手工将共享内存块的大小按页面大小对齐。 SHM_RDONLY表示这个内存块将仅允许读取操作而禁止写入。 如果这个 函数调用成功则会返回绑定的共享内存块对应的地址。通过 fork 函数创建的子进程同时继承这些共享内存块;如果需要,它们可以主动脱离这些共享内存块。 当一个进程不再使用一个共享内存块的时候应通过调用 shmdt(Shared Memory Detach,脱离共享内存块)函数与该共享内存块脱离。将由 shmat 函数返回的地址传递给这个函数。如果当释放这个内存块的进程是最后一个使用该内存块的进程,则这个内存块将被删除。对 exit 或任何exec族函数的调用都会自动使进程脱离共享内存块。

控制和释放共享内存块

  调用 shmctl("Shared Memory Control",控制共享内存)函数会返回一个共享内存块的相关信息。同时 shmctl 允许程序修改这些信息。该函数的第一个参数是一个共享内存块标识。
  要获取一个共享内存块的相关信息,则为该函数传递 IPC_STAT 作为第二个参数,同时传递一个指向一个 struct shmid_ds 对象的 指针作为第三个参数。
  要删除一个共享内存块,则应将 IPC_RMID 作为第二个参数,而将 NULL 作为第三个参数。当最后一个绑定该共享内存块的进程与其脱离时,该共享内存块将被删除。
  您应当在结束使用每个共享内存块的时候都使用 shmctl 进行释放,以防止超过系统所允许的共享内存块的总数限制。调用 exit 和 exec 会使进程脱离共享内存块,但不会删除这个内存块。 要查看其它有关共享内存块的操作的描述,请参考shmctl函数的手册页。

示例程序

  代码 5.1 中的程序展示了共享内存块的使用。
  代码 5.1 (shm.c) 尝试共享内存
  #include <stdio.h>
  #include <sys/shm.h>
  #include <sys/stat.h>
  int main()
  {
  int segment_id;
  char* shared_memory;
  struct shmid_ds shmbuffer;
  int segment_size;
  const int shared_segment_size = 0x6400; /* 分配一个共享内存块 */
  segment_id = shmget(IPC_PRIVATE, shared_segment_size, IPC_CREAT|IPC_EXCL|S_IRUSR|S_IWUSR ); /* 绑定到共享内存块 */
  shared_memory = (char*)shmat(segment_id, 0, 0);
  printf("shared memory attached at address %p\n", shared_memory); /* 确定共享内存的大小 */
  shmctl(segment_id, IPC_STAT, &shmbuffer);
  segment_size = shmbuffer.shm_segsz;
  printf("segment size: %d\n", segment_size);
  sprintf(shared_memory, "Hello, world."); /* 在共享内存中写入一个字符串 */
  shmdt(shared_memory); /* 脱离该共享内存块 */
  shared_memory = (char*)shmat(segment_id, (void*) 0x500000, 0);/* 重新绑定该内存块 */
  printf("shared memory reattached at address %p\n", shared_memory);
  printf("%s\n", shared_memory); /* 输出共享内存中的字符串 */
  shmdt(shared_memory); /* 脱离该共享内存块 */
  shmctl(segment_id, IPC_RMID, 0);/* 释放这个共享内存块 */
  return 0;
  }

调试

  使用ipcs 命令可用于查看系统中包括共享内存在内的 进程间通信机制的信息。指定-m参数以获取有关共享内存的信息。例如,以下的示例表示有一个编号为1627649的共享内存块正在使用中:
  % ipcs -m ------ Shared Memory Segments -------- key shmid owner perms bytes nattch status 0x00000000 1627649 user 640 25600 0 如果这个共享内存块在程序结束后没有被删除而是被错误地保留下来,您可以用ipcrm命令删除它。
  % ipcrm shm 1627649

优点和缺点

  共享内存块提供了在任意数量的进程之间进行高效双向通信的机制。每个使用者都可以读取写入数据,但是所有程序之间必须达成并遵守一定的协议,以防止诸如在读取信息之前覆写内存空间等竞争状态的出现。不幸的是,Linux无法严格保证提供对共享内存块的独占访问,甚至是在您通过使用IPC_PRIVATE创建新的共享内存块的时候也不能保证访问的独占性。 同时,多个使用共享内存块的进程之间必须协调使用同一个键值。
相关文章
|
2月前
|
安全 Linux Shell
Linux上执行内存中的脚本和程序
【9月更文挑战第3天】在 Linux 系统中,可以通过多种方式执行内存中的脚本和程序:一是使用 `eval` 命令直接执行内存中的脚本内容;二是利用管道将脚本内容传递给 `bash` 解释器执行;三是将编译好的程序复制到 `/dev/shm` 并执行。这些方法虽便捷,但也需谨慎操作以避免安全风险。
165 6
|
3天前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
8天前
|
存储 缓存 监控
|
28天前
|
存储 缓存 监控
Linux中内存和性能问题
【10月更文挑战第5天】
37 4
|
27天前
|
算法 Linux
Linux中内存问题
【10月更文挑战第6天】
38 2
|
6天前
|
缓存 算法 Linux
Linux内核中的内存管理机制深度剖析####
【10月更文挑战第28天】 本文深入探讨了Linux操作系统的心脏——内核,聚焦其内存管理机制的奥秘。不同于传统摘要的概述方式,本文将以一次虚拟的内存分配请求为引子,逐步揭开Linux如何高效、安全地管理着从微小嵌入式设备到庞大数据中心数以千计程序的内存需求。通过这段旅程,读者将直观感受到Linux内存管理的精妙设计与强大能力,以及它是如何在复杂多变的环境中保持系统稳定与性能优化的。 ####
13 0
|
28天前
|
存储 缓存 固态存储
|
30天前
|
Linux C++
Linux c/c++文件虚拟内存映射
这篇文章介绍了在Linux环境下,如何使用虚拟内存映射技术来提高文件读写的速度,并通过C/C++代码示例展示了文件映射的整个流程。
41 0
|
3月前
|
机器学习/深度学习 消息中间件 Unix
深入理解Linux虚拟内存管理(九)(下)
深入理解Linux虚拟内存管理(九)
37 1
|
3月前
|
缓存 Linux 调度
Linux服务器如何查看CPU占用率、内存占用、带宽占用
Linux服务器如何查看CPU占用率、内存占用、带宽占用
930 0