基于梯度下降的神经网络

简介: 一、特点: 0.无监督的神经网络 1.基于梯度下降 2.固定学习速率 3.离线学习(批量学习)4.隐藏层数目范围:[1, +∞) 4.可以选择激活函数类型 5.numpy的矩阵运算(黑科技)6.友好的 API (高仿sklearn, 没办法,太好用了 ^_^!!!)7.测试用到了sklearn库的datasets获取数据,未安装的朋友pip安装即可8.神经网络学习过程的形象描述:正向传播、反向传播像海浪一样来回冲刷权值W与偏置b9.用数组的形式实现各层的权值(矩阵)和偏置(向量),其好处是可以用循环来处理各个层。

一、特点:

0.无监督的神经网络
1.基于梯度下降
2.固定学习速率
3.离线学习(批量学习)
4.隐藏层数目范围:[1, +∞) 4.可以选择激活函数类型 5.numpy的矩阵运算(黑科技
6.友好的 API (高仿sklearn, 没办法,太好用了 ^_^!!!)
7.测试用到了sklearn库的datasets获取数据,未安装的朋友pip安装即可
8.神经网络学习过程的形象描述:正向传播反向传播海浪一样来回冲刷权值W偏置b

9.用数组的形式实现各层的权值(矩阵)和偏置(向量),其好处是可以用循环来处理各个层。从而可以对隐藏层的数目没有了限制!!附图:


10.忍不住再补充一个想法:上面这个图可以泛化应用到各种循环流水作业的场景


二、效果:
未分类:


隐藏层:[6,4]效果:


隐藏层:[6,5,3]效果:


隐藏层:[6,8,5]效果:


隐藏层:[7,9,12,8,5]效果:(看来不是隐藏层越多,效果越好啊!)

三、代码:

 

import numpy as np

'''
无监督的神经网络
1.基于梯度下降
2.固定学习速率
3.离线学习(批量学习)
4.可以选择激活函数类型
5.numpy强大的矩阵运算能力
'''

class NeuralNetworks(object):
    '''
    神经网络
        用法:
        >>> X = np.array([[0,0],[0,1],[1,0],[1,1]])
        >>> y = np.array([0,1,2,3])
        
        >>> hiden_layers = [4,6]
        >>> active_type = ['sigmoid', 'sigmoid', 'sigmoid']
        >>> nn = NeuralNetworks(hiden_layers, active_type)
        >>> nn.fit(X, y)
        >>> print(nn.predict(X))
    '''
    def __init__(self, hiden_layers=None, active_type=None, n_iter=10000, epsilon=0.01, lamda=0.01, only_hidens=True):
        '''接收部分参数'''
        self.epsilon = epsilon  # 学习速率
        self.lamda = lamda      # 正则化强度
        self.n_iter = n_iter    # 迭代次数
        if hiden_layers is None:
            hiden_layers = [5] # 默认:隐藏层数目1,节点数目5
        self.hiden_layers = hiden_layers # 各隐藏层节点数 (list)
        self.only_hidens = only_hidens # 接收的是否仅仅是隐藏层,默认True
        
        # 激活函数类型
        self.active_functions = {
            'sigmoid': self._sigmoid,
            'tanh': self._tanh, # 只有这个激活函数才有效果!!
            'radb': self._radb,
            #'line': self._line, #会出错!
        }
        
        # 激活函数的导函数类型
        self.derivative_functions = {
            'sigmoid': self._sigmoid_d,
            'tanh': self._tanh_d,
            'radb': self._radb_d,
            #'line': self._line_d,
        }
        
        if active_type is not None:
            self.active_type = active_type
        else:
            length = len(self.hiden_layers)
            length = length + 1 if self.only_hidens else length - 1
            self.active_type = ['tanh'] * length # 默认激活函数类型
            print(length)
            print(self.active_type)
            
    def _sigmoid(self, z):
        if np.max(z) > 600:
            z[z.argmax()] = 600
        return 1.0 / (1.0 + np.exp(-z))
            
    def _tanh(self, z):
        return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z))
            
    def _radb(self, z):
        return np.exp(-z * z)
            
    def _line(self, z):
        return z
            
    def _sigmoid_d(self, z):
        return z * (1.0 - z)
            
    def _tanh_d(self, z):
        return 1.0 - z * z
            
    def _radb_d(self, z):
        return -2.0 * z * np.exp(-z * z)
            
    def _line_d(self, z):
        return np.ones(z.size) # 全一
        
    def _build(self, X, y):
        '''构建网络'''
        self.X = X
        self.y = y
        
        # 变量
        self.n_examples = y.size            # 样本集数目
        self.n_features = X[0].size         # 样本特征数目
        self.n_classes = np.unique(y).size  # 样本类别数目
        
        all_layers = [] # 各层节点数目(输入、隐藏、输出) 其中隐藏层可多个!!
        if self.only_hidens:
            all_layers.append(self.n_features)
            all_layers.extend(self.hiden_layers)
            all_layers.append(self.n_classes)
        else:
            all_layers.extend(self.hiden_layers)
        
        # 节点数目 (向量)
        self.n = np.array(all_layers) # 如:[3, 4, 2]
        self.size = self.n.size # 层的总数,如上:3
        
        # 层 (向量)
        self.a = np.empty(self.size, dtype=object)
        self.delta_a = np.empty(self.size, dtype=object)
        
        # 偏置 (向量)
        self.b = np.empty(self.size - 1, dtype=object)# 先占位(置空),dtype=object !如下皆然
        self.delta_b = np.empty(self.size - 1, dtype=object)

        # 权 (矩阵)
        self.W = np.empty(self.size - 1, dtype=object)
        self.delta_W = np.empty(self.size - 1, dtype=object)

        # 填充
        mu, sigma = 0, 0.1 # 均值、方差
        for i in range(self.size):
            self.a[i] = np.ones(self.n[i])
            self.delta_a[i] = np.zeros(self.n[i])
            if i < self.size - 1:
                self.b[i] = np.ones(self.n[i+1])   # 全一
                self.W[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1]))  # # 正态分布随机化
                self.delta_b[i] = np.zeros(self.n[i+1]) 
                self.delta_W[i] = np.zeros((self.n[i], self.n[i+1]))

    def _forward(self, X):
        '''前向传播(批量)'''
        self.a[0] = X # 便于使用循环
        for i in range(self.size - 1):
            nets = np.dot(self.a[i], self.W[i]) + self.b[i]
            #self.a[i+1] = np.tanh(nets)
            self.a[i+1] = self.active_functions[self.active_type[i]](nets) # 加了激活函数
        
        exp_scores = np.exp(nets) # 注意这里还是 nets!!
        probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
        return probs
        
    def _backward(self, probs):
        '''反向传播(批量)'''
        last = self.size - 1
        
        self.delta_a[last] = probs
        self.delta_a[last][range(self.n_examples), self.y] -= 1
        for i in range(last - 1, -1, -1):
            # 注意:因为是全部样本,所以有些地方要转置,或者前后换位
            self.delta_W[i] = np.dot(self.a[i].T, self.delta_a[i+1])
            self.delta_b[i] = np.sum(self.delta_a[i+1], axis=0)
            #self.delta_a[i] = np.dot(self.delta_a[i+1], self.W[i].T) * (1 - self.a[i]**2)
            self.delta_a[i] = np.dot(self.delta_a[i+1], self.W[i].T) * self.derivative_functions[self.active_type[i]](self.a[i]) # 加了激活函数的导函数
            
            # 正则化
            self.delta_W[i] += self.lamda * self.W[i]
            #self.delta_b[i] += 0.0
            
            # 梯度下降
            self.W[i] += -self.epsilon * self.delta_W[i]
            self.b[i] += -self.epsilon * self.delta_b[i]

    def _calculate_loss(self):
        '''损失函数(批量)'''
        probs = self._forward(self.X) # 批量: self.X
        
        # 计算损失
        corect_logprobs = -np.log(probs[range(self.n_examples), self.y])
        data_loss = np.sum(corect_logprobs)
        
        # 添加正则项损失(可选)
        data_loss += self.lamda/2 * (sum([np.sum(np.square(w)) for w in self.W]))
        return 1./self.n_examples * data_loss
        
    def fit(self, X, y):
        '''拟合'''
        # 将神经网络搭建完整
        self._build(X, y)
        
        # 按迭代次数,依次:
        for i in range(self.n_iter):
            # 前向传播
            probs = self._forward(self.X)
            # 反向传播
            self._backward(probs)
            # 计算损失
            if i % 1000 == 0:
                loss = self._calculate_loss()
                print("迭代次数:{}\t损失: {}".format(i, loss))

    def predict(self, x):
        '''预测(批量)'''
        probs = self._forward(x)
        return np.argmax(probs, axis=1)
        
        
# 以下皆为测试
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
def plot_decision_boundary(plt, xx, yy, Z, X, y, title):
    '''作图函数'''
    # 等高线图
    plt.contourf(xx, yy, Z, cmap=plt.cm.Paired, alpha=0.8)
    # 散点图
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)
    
    plt.xlabel('萼片长度')
    plt.ylabel('萼片宽度')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.xticks(())
    plt.yticks(())
    plt.title(title)
    plt.show()
    
def test2():
    '''第二个测试函数'''
    import matplotlib.pyplot as plt
    from sklearn import datasets
    # --------------------------------------------
    # 解决matplotlib中文乱码
    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
    # --------------------------------------------
    
    # ======================================================
    # 生成数据
    np.random.seed(0)
    X, y = datasets.make_moons(200, noise=0.20)

    h = .02
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    # ======================================================
    
    # 先作散点图,看看数据特点
    plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
    plt.show()

    # 定义神经网络
    nn = NeuralNetworks([6,5,3])
    # 拟合
    nn.fit(X, y)
    # 预测
    Z = nn.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # 作图
    plot_decision_boundary(plt, xx, yy, Z, X, y, "预测效果图")

def test1():
    '''第一个测试函数'''
    # 第一步:准备数据
    # 说明:逻辑异或(XOR)
    X = np.array([[-1,-1],[-1,1],[1,-1],[1,1]])
    y = np.array([0,1,2,3])
    
    # 第二步:创建神经网络
    # 说明:1.两个隐藏层,节点数目分别为4、6有两个节点
    #       2.输入层和输出层节点数目自动识别,默认不输入
    #       3.若包含输入层与输出层,可以设置参数 only_hidens=True
    #         如:nn = NeuralNetworks([2, 4, 6, 4], only_hidens=True)
    #
    #       4.完整例子:nn = NeuralNetworks(hiden_layers=[4, 6],
    #                                       active_type = ['tanh', 'tanh', 'tanh'], 
    #                                       n_iter=10000, 
    #                                       epsilon=0.01, 
    #                                       lamda=0.01, 
    #                                       only_hidens=True)
    nn = NeuralNetworks([2, 4, 6, 4], active_type = ['tanh', 'tanh', 'sigmoid'], only_hidens=False)
    
    # 第三步:拟合
    nn.fit(X, y)
    
    # 第四步:预测
    print(nn.predict(X))
    
    
if __name__ == '__main__':
    test1()
    test2()

 

目录
相关文章
|
机器学习/深度学习 网络架构
神经网络4
与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。 这是什么意思呢?也就是说,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。 下面就是一个例子(此两图来自colah的博客),红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。 可以看到,这个两层神经网络的决策分界是非常平滑的曲线,而且分类的很好。有趣的是,前面已经学到过,单层网络只能做线性分类任务。而两层神经网络中的后一层也是线性分类层,应该只能做线性分类任务。为什么两个线性分类任务结合就可以做非线性分类任务? 我们可以把输出层的决策分界单独拿出来看一下
77 0
WK
|
3月前
|
机器学习/深度学习 算法
神经网络的反向传播是什么
反向传播(Backpropagation)是用于训练神经网络的一种关键算法,其目标是通过计算损失函数关于网络参数的梯度来优化这些参数,从而提升网络性能。该算法包括前向传播和反向传播两个阶段:前者计算预测结果与损失值,后者利用链式法则逐层计算梯度以更新权重和偏置。作为深度学习中最常用的优化方法之一,反向传播广泛应用于多种神经网络模型中,通过不断迭代改进模型的预测准确性和泛化能力。
WK
64 5
|
6月前
|
机器学习/深度学习 算法
神经网络的反向传播
梯度下降是神经网络中的优化算法,用于找目标函数最小值,通过梯度指示的最速下降方向调整参数。学习率η控制步长,过大可能导致震荡,过小则收敛慢。初始点随机选择,可能影响找到的最小值。梯度下降有三种方式:批量(BGD)、随机(SGD)和小批量(MBGD),主要区别在于Batch Size。SGD速度快但波动大,BGD准确但慢,MBGD是折中。在训练中,Epoch是完整遍历数据集的次数,Batch是每次处理的数据子集,Iteration是参数更新的次数。反向传播利用链式法则计算损失函数梯度,更新权重。
神经网络的反向传播
|
6月前
|
机器学习/深度学习 算法 PyTorch
神经网络反向传播算法
神经网络中的反向传播算法是用于训练的关键步骤,通过计算损失函数梯度更新权重。它始于前向传播,即输入数据通过网络得出预测输出,接着计算预测与实际值的误差。反向传播利用链式法则从输出层开始逐层计算误差,更新每一层的权重和偏置。例如,一个包含隐藏层的网络,初始权重随机设定,通过反向传播计算损失函数梯度,如sigmoid激活函数的网络,调整权重以减小预测误差。在Python的PyTorch框架中,可以使用`nn.Linear`定义层,`optimizer`进行参数优化,通过`backward()`计算梯度,`step()`更新参数。
|
6月前
|
机器学习/深度学习 算法 数据可视化
感知机和神经网络
**神经网络**是模仿生物神经元结构的数学模型,用于处理复杂关系和模式识别。它由输入层、隐藏层(可能多层)和输出层组成,其中隐藏层负责信息处理。随着层数增加(深度学习),网络能处理更多信息。基本模型包括感知机,仅输入和输出层,用于线性划分;而**BP神经网络**有多个隐藏层,通过反向传播和梯度下降优化参数,避免局部最小值。训练过程中,神经元通过激励函数响应并调整权重,以提高预测准确性。
|
6月前
|
机器学习/深度学习 存储 算法
简单的神经网络
softmax激活函数将多个未归一化的值转换为概率分布,常用于多分类问题。交叉熵损失函数,特别是与softmax结合时,是评估分类模型性能的关键,尤其适用于多分类任务。它衡量模型预测概率与实际标签之间的差异。在PyTorch中,`nn.CrossEntropyLoss`函数结合了LogSoftmax和负对数似然损失,用于计算损失并进行反向传播。通过`loss.backward()`,模型参数的梯度被计算出来,然后用优化器如`SGD`更新这些参数以减小损失。
|
6月前
|
机器学习/深度学习 监控 API
神经网络之防止过拟合
防止神经网络过拟合的方法包括正则化,如L1(Lasso)和L2(岭回归)正则化,以及Dropout技术。L1正则化能产生稀疏权重,帮助特征选择;L2正则化避免权重过大但不使其为零。Dropout在训练时随机关闭部分神经元,减少依赖,提高模型泛化能力。此外,还有数据增强、早停法等策略来改善过拟合问题。
|
6月前
|
机器学习/深度学习 算法 语音技术
神经网络
【6月更文挑战第14天】神经网络。
51 3
|
机器学习/深度学习 算法 自动驾驶
神经网络5
4.训练 下面简单介绍一下两层神经网络的训练。 在Rosenblat提出的感知器模型中,模型中的参数可以被训练,但是使用的方法较为简单,并没有使用目前机器学习中通用的方法,这导致其扩展性与适用性非常有限。从两层神经网络开始,神经网络的研究人员开始使用机器学习相关的技术进行神经网络的训练。例如用大量的数据(1000-10000左右),使用算法进行优化等等,从而使得模型训练可以获得性能与数据利用上的双重优势。 机器学习模型训练的目的,就是使得参数尽可能的与真实的模型逼近。具体做法是这样的。首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。样本的预测目标为yp,真实目标
86 0
|
机器学习/深度学习 自然语言处理 算法
简单了解神经网络
神经网络是一种强大的机器学习算法,具有很广泛的应用,可以用于图像识别、语音识别、自然语言处理、推荐系统等多个领域。
103 0