基于Hadoop的云盘系统客户端技术难点之三 小文件存储优化

简介:

作者:张子良

版权所有,转载请注明出处。

一、概述

首先明确概念,这里的小文件是指小于HDFS系统Block大小的文件(默认64M),如果使用HDFS存储大量的小文件,将会是一场灾难,这取决于HDFS的实现机制和框架结构,每一个存储在HDFS中的文件、目录和块映射为一个对象存储在NameNode服务器内存中,通常占用150个字节。如果有1千万个文件,就需要消耗大约3G的内存空间。如果是10亿个文件呢,简直不可想象。这里需要特别说明的是,每一个小于Block大小的文件,存储是实际占用的存储空间仍然是实际的文件大小,而不是整个block大小

  为解决小文件的存储Hadoop自身提供了两种机制来解决相关的问题,包括HAR和SequeueFile,这两种方式在某些方面解决了本层面的问题,单仍然存在着各自的不足。下文讲详细说明。

二、Hadoop HAR

  Hadoop Archives (HAR files) ,这个特性从Hadoop 0.18.0版本就已经引入了,他可以将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-reduce进行操作,打包后的文件由索引和存储两大部分组成,索引部分记录了原有的目录结构和文件状态。其原理如下图所示:

 

 

  缺点:

  1. HAR 方式虽然能够实现NameNode内存空间的优化,但是他是一个人工干预的过程,同时他既不能够支持自动删除原小文件,也不支持追加操作,当有新文件进来以后,需要重新打包。
  2. HAR files一旦创建就不能修改,要做增加和修改文件必须重新打包。事实上,这对那些写后便不能改的文件来说不是问题,因为它们可以定期成批归档,比如每日或每周。
  3. HAR files目前还不支持文档压缩。

三、SequeuesFile

  Sequence file由一系列的二进制key/value组成,如果key为小文件名,value为文件内容,则可以将大批小文件合并成一个大文件。Hadoop-0.21.0版本开始中提供了SequenceFile,包括Writer,Reader和SequenceFileSorter类进行写,读和排序操作。该方案对于小文件的存取都比较自由,不限制用户和文件的多少,支持Append追加写入,支持三级文档压缩(不压缩、文件级、块级别)。其存储结构如下图所示:

示例代码如下所示:

  private static void writeTest(FileSystem fs, int count, int seed, Path file,
                                CompressionType compressionType, CompressionCodec codec)
    throws IOException {
    fs.delete(file, true);
    LOG.info("creating " + count + " records with " + compressionType +
             " compression");

  //指明压缩方式
    SequenceFile.Writer writer =
      SequenceFile.createWriter(fs, conf, file,
                                RandomDatum.class, RandomDatum.class, compressionType, codec);
    RandomDatum.Generator generator = new RandomDatum.Generator(seed);
    for (int i = 0; i < count; i++) {
      generator.next();

  //keyh
      RandomDatum key = generator.getKey();

  //value
      RandomDatum value = generator.getValue();
//追加写入
      writer.append(key, value);
    }
    writer.close();
  }

  缺点:

  目前为止只发现其Java版本API支持,未在其他开发接口中发现相关版本的实现,尤其是LibHDFS和thrift接口中,可能真是C++阵营狂热支持者的一个悲剧。

四、Hbase

  如果你需要处理大量的小文件,并且依赖于特定的访问模式,可以采用其他的方式,比如Hbase。Hbase以MapFiles存储文件,并支持Map/Reduce格式流数据分析。对于大量小文件的处理,也不失为一种好的选择。

目录
相关文章
|
2月前
|
存储 分布式计算 资源调度
Hadoop小文件解决方案
Hadoop小文件解决方案
|
4月前
|
存储 分布式计算 算法
Hadoop性能优化存储空间需求
【6月更文挑战第7天】
41 3
|
2月前
|
存储 缓存 分布式计算
|
2月前
|
存储 数据可视化 Serverless
【C语言】C语言-学籍管理系统(源码+文件存储)【独一无二】
【C语言】C语言-学籍管理系统(源码+文件存储)【独一无二】
|
4月前
|
分布式计算 Hadoop 大数据
大数据技术:Hadoop与Spark的对比
【6月更文挑战第15天】**Hadoop与Spark对比摘要** Hadoop是分布式系统基础架构,擅长处理大规模批处理任务,依赖HDFS和MapReduce,具有高可靠性和生态多样性。Spark是快速数据处理引擎,侧重内存计算,提供多语言接口,支持机器学习和流处理,处理速度远超Hadoop,适合实时分析和交互式查询。两者在资源占用和生态系统上有差异,适用于不同应用场景。选择时需依据具体需求。
|
4月前
|
存储 分布式计算 Hadoop
Hadoop性能优化存储效率
【6月更文挑战第5天】
80 7
|
4月前
|
存储 分布式计算 NoSQL
|
4月前
|
存储 分布式计算 Hadoop
使用Apache Hadoop进行分布式计算的技术详解
【6月更文挑战第4天】Apache Hadoop是一个分布式系统框架,应对大数据处理需求。它包括HDFS(分布式文件系统)和MapReduce编程模型。Hadoop架构由HDFS、YARN(资源管理器)、MapReduce及通用库组成。通过环境搭建、编写MapReduce程序,可实现分布式计算。例如,WordCount程序用于统计单词频率。优化HDFS和MapReduce性能,结合Hadoop生态系统工具,能提升整体效率。随着技术发展,Hadoop在大数据领域将持续发挥关键作用。
|
4月前
|
数据采集 SQL 分布式计算
|
5月前
|
存储 分布式计算 Hadoop
Hadoop节点存储方式
【5月更文挑战第20天】
42 2