poj 1328 【Radar Installation】【几何转化、区间覆盖】

简介: 点击打开题目 Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54970   Accepted: 12381 Descrip...

点击打开题目

Radar Installation
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 54970   Accepted: 12381

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 
 
Figure A Sample Input of Radar Installations


Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

Sample Output

Case 1: 2
Case 2: 1

Source

题目翻译:给出两个数字n和d,n代表n个P点,d代表圆的半径,然后下面n行,每行一组坐标(x,y),分别代表所有的P点,

求:在x坐标轴上,至少要画几个以d为半径的圆,才能使P点均在圆内。


解题思路:分别以P点为圆心,d为半径画圆,圆分别会在x轴上截取相应的线段,只要线段内有圆心,则即可覆盖P点,因此问题

便转化为求X轴上共有多少独立区间!


#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<math.h>
using namespace std;
struct A{
	double zuo,you;
};
int cmp(A a,A b){
	return a.zuo<b.zuo;
}
int main(){
	int t=1,n,i,r,x,y,yes;
	A a[1200];
	while(scanf("%d%d",&n,&r)&&!(n==0&&r==0)){
        yes=0;
		for(i=1;i<=n;i++){
			scanf("%d%d",&x,&y);
			if(r<y) yes=1;
			double num=sqrt((double)(r*r-y*y));
			a[i].zuo=double(x-num);
			a[i].you=double(x+num);
		}
		if(yes){printf("Case %d: -1\n",t++);continue;}
		sort(a+1,a+n+1,cmp);
		double k=a[1].you;
		int count=1;
		for(i=2;i<=n;i++){
			if(a[i].zuo>k){
				k=a[i].you;
				count++;
			}
			else{
				if(a[i].you<k)
					k=a[i].you;
			}
		}
		printf("Case %d: %d\n",t++,count);
	}
	return 0;
}


目录
相关文章
|
6月前
|
存储 机器学习/深度学习 算法
【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵
【算法训练-数组 三】【数组矩阵】螺旋矩阵、旋转图像、搜索二维矩阵
89 0
|
3月前
|
Python
python实现:旋转矩阵转换为四元数
python实现:旋转矩阵转换为四元数
96 0
|
传感器 机器学习/深度学习 算法
【方位估计 】基于music算法均匀线阵的标量阵与矢量阵的方位估计附Matlab源码
【方位估计 】基于music算法均匀线阵的标量阵与矢量阵的方位估计附Matlab源码
POJ1269 Intersecting Lines(两直线关系)
POJ1269 Intersecting Lines(两直线关系)
62 0
|
机器学习/深度学习
HDOJ(HDU) 2524 矩形A + B(推导公式、)
HDOJ(HDU) 2524 矩形A + B(推导公式、)
99 0
HDOJ(HDU) 2524 矩形A + B(推导公式、)
|
机器学习/深度学习 C语言 UED
[解题报告]【第34题】给定一个 n X n 的矩阵 和 R,求旋转 90R 度以后的矩阵
[解题报告]【第34题】给定一个 n X n 的矩阵 和 R,求旋转 90R 度以后的矩阵
[解题报告]【第34题】给定一个 n X n 的矩阵 和 R,求旋转 90R 度以后的矩阵