[复变函数]第06堂课 2.1 解析函数的概念与 Cauchy-Riemann 方程 (续)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 2. 解析函数及其简单性质 (1) 定义: a. 若 $w=f(z)$ 在区域 $D$ 内可微, 则称 $f$ 在 $D$ 内解析; b. 若 $w=f(z)$ 在 $z_0$ 处的某邻域内解析, 则称 $f$ 在 $z_0$ 处解析; c.

2. 解析函数及其简单性质

(1) 定义:

a. 若 $w=f(z)$ 在区域 $D$ 内可微, 则称 $f$ 在 $D$ 内解析;

b. 若 $w=f(z)$ 在 $z_0$ 处的某邻域内解析, 则称 $f$ 在 $z_0$ 处解析;

c. 若 $f$ 在闭域 $\bar D$ 的某个邻域内解析, 则称 $f$ 在 $\bar D$ 上解析;

d. 若 $f$ 在 $z_0$ 处不解析 ($\forall\ \rho>0,\ \exists\ z\in U_\rho(z_0),\st f$ 在 $z$ 处不解析), 但在任一邻域内都有 $f$ 的解析点, 则称 $z_0$ 为 $f$ 的奇点. 例如: $f(z)=\cfrac{1}{z}$.

(2) 注记:

a. 以后所指的解析函数容许奇点.

b. 与实函数的区别: 实可微 (点 $\rra$ 区间); 复解析 (区域 $\rra$ 点).

c. 与实函数的联系: 四则运算、链式法则 ($(g\circ f)'=g'\circ f'$).

 

3. Cauchy-Riemann 方程

(1) 引言: $$\beex \bea &\quad w=f(z)=u(x,y)+iv(x,y),\quad z=x+iy\ &\ra f'(z)=?,\quad \lap z=\lap x+i\lap y. \eea \eeex$$ 解答: $$\beex \bea f'(z)&=\lim_{\lap z\to 0}\frac{f(z+\lap z)-f(z)}{\lap z}\\ &=\lim_{(\lap x,\lap y)\to 0} \frac{ [u(x+\lap x,y+\lap y)-u(x,y)]+i[v(x+\lap x,y+\lap y)-v(x,y)] }{ \lap x+i\lap y }. \eea \eeex$$ 当 $\lap y=0$ 时, $$\beex \bea f'(z)&=\lim_{\lap x\to 0}\frac{[u(x+\lap x,y)-u(x,y)]+i[v(x+\lap x,y)-v(x,y)]}{\lap x}\\ &=u_x+iv_x; \eea \eeex$$ 当 $\lap x=0$ 时, $$\beex \bea f'(z)&=\lim_{\lap y\to 0}\frac{ [u(x,y+\lap y)-u(x,y)]+i[v(x,y+\lap y)-v(x,y)] }{i\lap y}\\ &=\frac{1}{i}(u_y+iv_y)\\ &=v_y-iu_y. \eea \eeex$$ 于是, $$\bex u_x+iv_x=f'(z)=v_y-iu_y\ra u_x=v_y,\ u_y=-v_x. \eex$$

(2) 称 $u_x=v_y,\ u_y=-v_x$ 为 Cauchy-Riemann (C-R) 方程.

(3) 可微的必要条件: $$\bex f=u+iv\mbox{ 在 }z_0\mbox{ 处可微}\ra \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在 }(x_0,y_0)\mbox{ 处存在}\\ C-R\mbox{ 方程} \ea}. \eex$$

(4) 可微的充要条件: $$\bex f=u+iv\mbox{ 在 }z_0\mbox{ 处可微}\lra \sedd{\ba{ll} u,v\mbox{ 在 }(x_0,y_0)\mbox{ 可微}\\ C-R\mbox{ 方程} \ea}. \eex$$

(5) 可微的充分条件: $$\bex f=u+iv\mbox{ 在 }z_0\mbox{ 处可微}\Leftarrow \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在 }(x_0,y_0)\mbox{ 存在且连续}\\ C-R\mbox{ 方程} \ea}. \eex$$

(6) 解析的必要条件: $$\bex f\mbox{ 在区域 }D\mbox{ 内解析}\ra \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在区域 }D\mbox{ 内存在}\\ C-R\mbox{ 方程} \ea}. \eex$$

(7) 解析的充要条件: $$\bex f\mbox{ 在区域 }D\mbox{ 内解析}\lra \sedd{\ba{ll} u,v\mbox{ 在区域 }D\mbox{ 可微}\\ C-R\mbox{ 方程}\ea} \eex$$

(8) 解析的充分条件: $$\bex f\mbox{ 在区域 }D\mbox{ 内解析}\Leftarrow \sedd{\ba{ll} u_x,u_y,v_x,v_y\mbox{ 在区域 }D\mbox{ 内存在且连续}\\ C-R\mbox{ 方程} \ea} \eex$$

(9) 例子:

a. $f(z)=|z|^2$ 解析不?

b. $f(z)=x^2-iy^2$ 解析不?

c. $f(z)=e^x(\cos y+i\sin y)$ 解析不? 如果解析, 求出 $f'(z)$.

d. 设 $f=u+iv$ 解析, 试证: 曲线 $u(x,y)=c_1, v(x,y)=c_2$ 正交.

 

作业: P 90 T 5 (3) , T 8 (1) . 

目录
相关文章
|
1月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
58 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
16天前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
31 1
|
18天前
|
消息中间件 存储 负载均衡
Apache Kafka核心概念解析:生产者、消费者与Broker
【10月更文挑战第24天】在数字化转型的大潮中,数据的实时处理能力成为了企业竞争力的重要组成部分。Apache Kafka 作为一款高性能的消息队列系统,在这一领域占据了重要地位。通过使用 Kafka,企业可以构建出高效的数据管道,实现数据的快速传输和处理。今天,我将从个人的角度出发,深入解析 Kafka 的三大核心组件——生产者、消费者与 Broker,希望能够帮助大家建立起对 Kafka 内部机制的基本理解。
49 2
|
30天前
|
存储 NoSQL MongoDB
MongoDB 概念解析
10月更文挑战第12天
20 0
MongoDB 概念解析
|
2月前
|
存储 前端开发 JavaScript
前端基础(十二)_函数高级、全局变量和局部变量、 预解析(变量提升)、函数返回值
本文介绍了JavaScript中作用域的概念,包括全局变量和局部变量的区别,预解析机制(变量提升),以及函数返回值的使用和类型。通过具体示例讲解了变量的作用域、函数的返回值、以及如何通过return关键字从函数中返回数据。
23 1
前端基础(十二)_函数高级、全局变量和局部变量、 预解析(变量提升)、函数返回值
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer图解以及相关的概念解析
前言 transformer是目前NLP甚至是整个深度学习领域不能不提到的框架,同时大部分LLM也是使用其进行训练生成模型,所以transformer几乎是目前每一个机器人开发者或者人工智能开发者不能越过的一个框架。接下来本文将从顶层往下去一步步掀开transformer的面纱。 transformer概述 Transformer模型来自论文Attention Is All You Need。 在论文中最初是为了提高机器翻译的效率,它使用了Self-Attention机制和Position Encoding去替代RNN。后来大家发现Self-Attention的效果很好,并且在其它的地
|
1月前
|
存储
atoi函数解析以及自定义类型经典练习题
atoi函数解析以及自定义类型经典练习题
31 0
|
1月前
|
数据处理 Python
深入探索:Python中的并发编程新纪元——协程与异步函数解析
深入探索:Python中的并发编程新纪元——协程与异步函数解析
26 3
|
1月前
|
机器学习/深度学习 算法 C语言
【Python】Math--数学函数(详细附解析~)
【Python】Math--数学函数(详细附解析~)
|
1月前
|
JSON 关系型数据库 API
ElasticSearch 的概念解析与使用方式(二)
ElasticSearch 的概念解析与使用方式(二)
25 1

推荐镜像

更多