[物理学与PDEs]第1章习题9 磁偶极矩的极限矢势

简介: 设在发现为 ${\bf n}$ 的平面上, 有一电流强度为 $I$ 的环形电流, 其方向与 ${\bf n}$ 成右手系. 又设该环形电流所围的面积为 $S_0$, 则 $$\bex {\bf m}=IS_0{\bf n} \eex$$ 称为该环形电流的磁偶极矩.

设在发现为 ${\bf n}$ 的平面上, 有一电流强度为 $I$ 的环形电流, 其方向与 ${\bf n}$ 成右手系. 又设该环形电流所围的面积为 $S_0$, 则 $$\bex {\bf m}=IS_0{\bf n} \eex$$ 称为该环形电流的磁偶极矩. 试证明: 当 $S_0\to0$ (环收缩到一点), $I\to+\infty$, 但 ${\bf n}$ 和 $m=IS_0$ 保持不变时, 由该磁偶极矩产生的磁场的矢势为 $$\bex {\bf A}(P)=-\cfrac{\mu_0}{4\pi}{\bf m}\times \n_P\cfrac{1}{r_{OP}}, \eex$$ 其中 $\n_P$ 表示对 $P$ 点的梯度.

 

证明: 由 (8. 51), $$\beex \bea {\bf A}(P)&=\lim \cfrac{\mu_0}{4\pi}\int_\Omega \cfrac{{\bf j}(P')}{r_{P'P}}\rd V_{P'}\\ &=\lim \cfrac{\mu_0}{4\pi} \int_l \cfrac{{\bf j}(P')}{r_{P'P}}\rd l\quad \sex{l:\mbox{ 环形}}\\ &=\lim \cfrac{\mu_0I}{4\pi}\int_l \cfrac{\rd {\bf l}}{r_{P'P}}\\ &=\lim \cfrac{\mu_0I}{4\pi}\int_{S_0} {\bf n}\rd S\times \n_{P'}\cfrac{1}{r_{P'P}}\quad\sex{\mbox{Stokes 公式}}\\ &=\cfrac{\mu_0I}{4\pi}\int_{S_0} {\bf n}\rd S\times \n_O\cfrac{1}{r_{OP}}\\ &=-\cfrac{\mu_0IS_0}{4\pi}{\bf n}\times \n_P\cfrac{1}{r_{OP}}\\ &=-\cfrac{\mu_0}{4\pi}{\bf m}\times \n_P\cfrac{1}{r_{OP}}. \eea \eeex$$

 

目录
相关文章
|
机器学习/深度学习
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...
608 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\...
666 0
[物理学与PDEs]第3章习题7 快、慢及Alfv\'en 特征速度的比较
证明: 当 $H_1\neq 0$ 及 $H_2^2+H_3^2\neq 0$ 时, 快、慢及 Alfv\'en 特征速度 $C_f$, $C_s$ 及 $C_a$ 满足 $$\bex 0
712 0
[物理学与PDEs]第4章 反应流体力学
[物理学与PDEs]第4章第1节 引言   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.
744 0
[物理学与PDEs]第3章第1节 等离子体
1.  磁流体力学研究等离子体这种导电流体在电磁场中的运动.     2.  任何物质由于 $T, p$ 等条件的不同而可以处于固态、液态、气态 (常见的三种聚集态) 或等离子体.     3.
823 0
[物理学与PDEs]第2章习题9 粘性流体动能的衰减
设 $\Omega\subset {\bf R}^3$ 为有界域, ${\bf u}$ 为 Navier-Stokes 方程组 (3. 4)-(3. 5) 满足边界条件 (3. 7) 的解, 其中体积力 ${\bf F}={\bf 0}$.
640 0
|
关系型数据库 RDS
[物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题
设 $\Omega$ 为单连通区域, 在其边界 $\vGa$ 上给定向量场 ${\bf u}_B$, 则在 $\bar\Omega$ 中存在速度场 ${\bf u}$, 使其在 $\Omega$ 中成立 $\Div{\bf u}=0$, 且该速度场有势, 即存在数量场 $\phi$ 使 ${\bf ...
912 0
|
关系型数据库 RDS Perl
[物理学与PDEs]第2章习题4 习题 3 的变分
设 ${\bf u}$ 为满足第 3 题中条件的解. 证明 ${\bf u}$ 为如下变分问题 $$\bex \min_{{\bf w}\in A}\cfrac{1}{2}\int_\Omega |{\bf w}|^2\rd x \eex$$ 的解, 其中 $$\bex A=\sed{{\bf w}...
656 0
|
算法框架/工具
[物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组
试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) 即化为 Euler 方程组 (1.
640 0