[再寄小读者之数学篇](2014-11-14 矩阵的应用: 友谊定理)

简介: 友谊定理: 如果在一群人中任何两个人都恰好有一个共同的朋友, 那么有一个人是每个人的朋友.

友谊定理: 如果在一群人中任何两个人都恰好有一个共同的朋友, 那么有一个人是每个人的朋友.

目录
相关文章
|
6月前
24考研|高等数学的基础概念定理(二)——第二章|导数与微分
24考研|高等数学的基础概念定理(二)——第二章|导数与微分
|
容器
数学|泊松分酒问题蕴藏的数学知识
数学|泊松分酒问题蕴藏的数学知识
214 0
|
算法
《什么是数学》读书笔记(一):反证法、数学归纳法与唯一分解定理
《什么是数学》读书笔记(一):反证法、数学归纳法与唯一分解定理     期中告一段落。除了下下星期要交的现文史论文以外,最近似乎又清闲了不少,又有功夫在这里写点东西了。当然,我宝贵的时间也没有荒废在论文、作业和考试上。
1348 0
|
算法框架/工具
最美的数学定理
1988年,Springer-Verlag主持在Mathematical Intelligencer上评选10个最美数学定理,结果如下: 1. Euler’s identity, $e^{i\pi}=-1$.
1038 0
[再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
709 0
[再寄小读者之数学篇](2014-11-24 Abel 定理)
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|N\ra |s_k-s|
601 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 数论)
1. 代数数: $\al\in\bbC$ 称为代数数, 如果它是某个系数为有理数的非零多项式的根. 2. 代数数全体构成一个域. (利用伙伴矩阵, 张量积很容易证明) 3. 代数整数: $\al\in\bbC$ 称为代数整数, 如果它是某个首一整系数多项式的根.
584 0
|
机器学习/深度学习 资源调度
[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)
在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B).
666 0
[再寄小读者之数学篇](2014-10-08 矩阵对称或反对称的一个充分条件)
设$A\in M_{n}(\mathbb F)$,且对任意的$\alpha,\beta\in\mathbb F^n$ 有$$ \alpha^TA\beta=0\Leftrightarrow\beta^TA\alpha=0 $$ 且$A$不是对称矩阵,证明$A^T=-A$.
882 0