在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B).
$$\bex \sqrt{x^2+x+1}+ \sqrt{y^2+y+1} +\sqrt{x^2-x+1}+ \sqrt{y^2-y+1}\geq 2(x+y). \eex$$ Ref. [Proof Without Words: An Algebraic Inequality, The College Mathematics Journal].
Assume that $a$ is a positive constant, $x(t),y(t)$ are two nonnegative $C^1(\bbR^+)$ functions, and $D(t)$ is a nonnegative function, satisfying $$\b...