[再寄小读者之数学篇](2014-11-14 矩阵的应用: 友谊定理)

简介: 友谊定理: 如果在一群人中任何两个人都恰好有一个共同的朋友, 那么有一个人是每个人的朋友.

友谊定理: 如果在一群人中任何两个人都恰好有一个共同的朋友, 那么有一个人是每个人的朋友.

目录
相关文章
|
算法框架/工具
最美的数学定理
1988年,Springer-Verlag主持在Mathematical Intelligencer上评选10个最美数学定理,结果如下: 1. Euler’s identity, $e^{i\pi}=-1$.
1028 0
[再寄小读者之数学篇](2014-11-24 Abel 定理)
设幂级数 $\dps{g(x)=\sum_{n=0}^\infty a_nx^n}$ 在 $|x|N\ra |s_k-s|
594 0
[再寄小读者之数学篇](2014-11-26 广义 Schur 分解定理)
设 $A,B\in \bbR^{n\times n}$ 的特征值都是实数, 则存在正交阵 $P,Q$ 使得 $PAQ$, $PBQ$ 为上三角阵.
701 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 数论)
1. 代数数: $\al\in\bbC$ 称为代数数, 如果它是某个系数为有理数的非零多项式的根. 2. 代数数全体构成一个域. (利用伙伴矩阵, 张量积很容易证明) 3. 代数整数: $\al\in\bbC$ 称为代数整数, 如果它是某个首一整系数多项式的根.
579 0
|
机器学习/深度学习 资源调度
[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)
在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B).
662 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
652 0
[再寄小读者之数学篇](2014-11-19 一个代数不等式)
$$\bex \sqrt{x^2+x+1}+ \sqrt{y^2+y+1} +\sqrt{x^2-x+1}+ \sqrt{y^2-y+1}\geq 2(x+y). \eex$$ Ref. [Proof Without Words: An Algebraic Inequality, The College Mathematics Journal].
650 0
[再寄小读者之数学篇](2014-10-08 矩阵对称或反对称的一个充分条件)
设$A\in M_{n}(\mathbb F)$,且对任意的$\alpha,\beta\in\mathbb F^n$ 有$$ \alpha^TA\beta=0\Leftrightarrow\beta^TA\alpha=0 $$ 且$A$不是对称矩阵,证明$A^T=-A$.
875 0
[再寄小读者之数学篇](2014-07-16 与对数有关的不等式)
试证: $$\bex (1+a)\ln (1+a)+(1+b)\ln (1+b)0. \eex$$   提示:  对函数 $f(x)=x\ln x$, 有 $$\bex f'(x)=\ln x+1,\quad f''(x)=\frac{1}{x}>0,\quad (x>0).
650 0
[再寄小读者之数学篇](2014-06-21 微分不等式)
Assume that $a$ is a positive constant, $x(t),y(t)$ are two nonnegative $C^1(\bbR^+)$ functions, and $D(t)$ is a nonnegative function, satisfying $$\b...
589 0