[再寄小读者之数学篇](2014-05-27 特征值估计)

简介: (来自 james2009) 设$A\in {M}_{n}\left( \mathbb{R}\right)$,${A}^{'}A$ 的全部特征值中: 最大值的设为${\lambda }_{max}$, 最小值的设为 ${\lambda }_{min}$.

(来自 james2009) 设$A\in {M}_{n}\left( \mathbb{R}\right)$,${A}^{'}A$ 的全部特征值中: 最大值的设为${\lambda }_{max}$, 最小值的设为 ${\lambda }_{min}$. 问下述结论是否成立: $A$ 属于 $\mathbb{C}$ 的任意特征值 $\xi$ 有: $$\bex \sqrt{\lm_{min}}\leq |\xi|\leq \sqrt{\lm_{max}}. \eex$$

证明: (来自龙凤呈祥) 对于复二次型$x^HA^TAx$易知$\forall x\in\mathbb C^n$ 有$$ \lambda_{\min}\|x\|^2\leq\|Ax\|^2\leq\lambda_{\max}\|x\|^2 $$ 而$Ax=\xi x$可得 $$\|Ax\|^2=\xi\overline{\xi}\|x\|^2$$ 结合两个式子就行了. 

目录
相关文章
|
数据可视化 JavaScript 前端开发
【数学篇】07 # 如何用向量和参数方程描述曲线?
【数学篇】07 # 如何用向量和参数方程描述曲线?
121 0
【数学篇】07 # 如何用向量和参数方程描述曲线?
|
机器学习/深度学习 人工智能 资源调度
【机器学习】线性回归——最小二乘法的概率解释高斯噪声(理论+图解+公式推导)
【机器学习】线性回归——最小二乘法的概率解释高斯噪声(理论+图解+公式推导)
330 0
【机器学习】线性回归——最小二乘法的概率解释高斯噪声(理论+图解+公式推导)
|
人工智能 开发者
回归方程求解小例子 | 学习笔记
快速学习回归方程求解小例子
回归方程求解小例子 | 学习笔记
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 多项式)
多项式 $$\bex p(z)=z^n+a_{n-1}x^{n-1}+\cdots+a_0 \eex$$ 的根的估计.
583 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 有限几何)
每个有限几何的线的条数 $\geq$ 点的个数. 若一个有限几何的线数 $=$ 点数, 则任意两条线都相交.
495 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
657 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
597 0
|
Perl
[再寄小读者之数学篇](2014-07-09 多项式的辗转相除与线性变换)
设 $V$ 是由次数不超过 $4$ 的一切实系数一元多项式组成的向量空间. 对于 $V$ 上的任意多项式 $f(x)$, 以 $x^2-1$ 除 $f(x)$ 所得的商式及余式分别为 $q(x)$ 和 $r(x)$, 记 $$\bex f(x)=q(x)(x^2-1)+r(x).
871 0