[再寄小读者之数学篇](2014-07-09 多项式的辗转相除与线性变换)

简介: 设 $V$ 是由次数不超过 $4$ 的一切实系数一元多项式组成的向量空间. 对于 $V$ 上的任意多项式 $f(x)$, 以 $x^2-1$ 除 $f(x)$ 所得的商式及余式分别为 $q(x)$ 和 $r(x)$, 记 $$\bex f(x)=q(x)(x^2-1)+r(x).

设 $V$ 是由次数不超过 $4$ 的一切实系数一元多项式组成的向量空间. 对于 $V$ 上的任意多项式 $f(x)$, 以 $x^2-1$ 除 $f(x)$ 所得的商式及余式分别为 $q(x)$ 和 $r(x)$, 记 $$\bex f(x)=q(x)(x^2-1)+r(x). \eex$$ 设 $\scrA$ 是 $V$ 到 $V$ 的映射, 使得 $$\bex \scrA(f(x))=r(x). \eex$$ 试证: $\scrA$ 是一个线性变换, 并求它关于基底 $\sed{1,x,x^2,x^3,x^4}$ 的矩阵.

 

证明: 若 $$\bex f(x)=q(x)(x^2-1)+r(x),\quad g(x)=q_1(x)(x^2-1)+r_1(x), \eex$$ 则 $$\beex \bea kf(x)&=kq(x)(x^2-1)+kr(x),\\ f(x)+g(x)&[q(x)+q_1(x)](x^2-1)+r(x)+r_1(x). \eea \eeex$$ 由辗转相除的唯一性即知 $$\beex \bea \scrA(kf(x))&=kr(x)=k\scrA(f(x)),\\ \scrA(f(x)+g(x))&=r(x)+r_1(x)=\scrA(f(x))+\scrA(g(x)). \eea \eeex$$ 故 $\scrA$ 为线性变换. 往求 $\scrA$ 在基 $1,x,x^2,x^3,x^4$ 下的矩阵. 设 $$\bex f(x)=ax^4+bx^3+cx^2+dx+e=q(x)(x^2-1)+px+q, \eex$$ 其中 $r(x)=px+q$ 为余式, 则将 $x=1$、$x=-1$ 分别代入有 $$\beex \bea a+b+c+d+e&=p+q,\\ a-b+c-d+e&=-p+q. \eea \eeex$$ 于是 $$\bex p=b+d,\quad q=a+c+e,\quad r(x)=(b+d)x+a+c+e. \eex$$ 而 $$\beex \bea \scrA(1,x,x^2,x^3,x^4)=(1,x,x^2,x^3,x^4)\sex{\ba{ccccc} 1&0&1&0&1\\ 0&1&0&1&0\\ 0&0&0&0&0\\ 0&0&0&0&0\\ 0&0&0&0&0 \ea}. \eea \eeex$$

目录
相关文章
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 多项式)
多项式 $$\bex p(z)=z^n+a_{n-1}x^{n-1}+\cdots+a_0 \eex$$ 的根的估计.
580 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
652 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 数论)
1. 代数数: $\al\in\bbC$ 称为代数数, 如果它是某个系数为有理数的非零多项式的根. 2. 代数数全体构成一个域. (利用伙伴矩阵, 张量积很容易证明) 3. 代数整数: $\al\in\bbC$ 称为代数整数, 如果它是某个首一整系数多项式的根.
579 0
[再寄小读者之数学篇](2014-11-19 一个代数不等式)
$$\bex \sqrt{x^2+x+1}+ \sqrt{y^2+y+1} +\sqrt{x^2-x+1}+ \sqrt{y^2-y+1}\geq 2(x+y). \eex$$ Ref. [Proof Without Words: An Algebraic Inequality, The College Mathematics Journal].
650 0
[再寄小读者之数学篇](2014-10-27 Frobenius 范数是酉不变范数)
对任两酉阵 $U,V$, 有 $$\bex \sen{A}_F=\sen{UAV}_F. \eex$$   事实上, $$\beex \bea \sen{UAV}_F^2&=\tr(V^*A^*U^*\cdot UAV)\\ &=\tr (V^*A^*AV)\\ &=\tr(AVV^*A^*)...
636 0
[再寄小读者之数学篇](2014-07-16 与对数有关的不等式)
试证: $$\bex (1+a)\ln (1+a)+(1+b)\ln (1+b)0. \eex$$   提示:  对函数 $f(x)=x\ln x$, 有 $$\bex f'(x)=\ln x+1,\quad f''(x)=\frac{1}{x}>0,\quad (x>0).
650 0
[再寄小读者之数学篇](2014-07-16 二阶中值)
设 $f(x)$ 在 $[a,b]$ 上二阶可微, 试证: 对任意 $c\in (a,b)$, 存在 $\xi\in (a,b)$ 使得 $$\bex \frac{f''(\xi)}{2}=\frac{f(a)}{(a-b)(a-c)} +\frac{f(b)}{(b-a)(b-c)}+\frac{f(c)}{(c-a)(c-b)}.
591 0
[再寄小读者之数学篇](2014-07-16 凹函数与次线性性)
设 $f$ 在 $[0,c]$ 上连续, $f(0)=0$, 且当 $x\in (0,c)$ 时, $f''(x)
569 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-07-17 行列式的计算)
试计算矩阵 $A=(\sin(\al_i+\al_j))_{n\times n}$ ($n\geq2$) 的行列式.   提示:  根据行列式的性质: (1) 行列式两列线性相关, 则行列式为零; (2) 若记第 $k$ 列为向量 $\al$ 的行列式为 $D(\al)$, 则 $$\b...
731 0
[再寄小读者之数学篇](2014-06-23 向量公式)
$$\bex \n\times({\bf a}\times{\bf b})=({\bf b}\cdot\n){\bf a} -({\bf a}\cdot\n){\bf b}+{\bf a}(\n\cdot{\bf b})-{\bf b}(\n\cdot{\bf a}).
550 0