(from D.Y. Peng) 设 $f$ 为区间 $I$ 上的可微函数, 满足微分方程 $$\bex f'(x)=g(f(x)),\quad x\in I, \eex$$ 其中 $g$ 是在 $f$ 的值域上有定义的连续函数. 证明: $f$ 一定是单调函数.
(from D.Y. Peng) 设 $f$ 为区间 $I$ 上的可微函数, 满足微分方程 $$\bex f'(x)=g(f(x)),\quad x\in I, \eex$$ 其中 $g$ 是在 $f$ 的值域上有定义的连续函数. 证明: $f$ 一定是单调函数.