[家里蹲大学数学杂志]第056期Tikhonov 泛函的变分

简介: 设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov 泛函 $$\bee\label{T} J_\alpha(x)=\sen{Tx-y_0}^2+\alpha...

设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov 泛函 $$\bee\label{T} J_\alpha(x)=\sen{Tx-y_0}^2+\alpha\sen{x}^2\quad \sex{x\in \scrX} \eee$$存在唯一最小解 $x^\alpha\in \scrX$, 且 $x^\alpha$ 适合 Euler-Lagrange 方程 $$\bee\label{E} \sex{\alpha I_\scrX+T^*T}x^\alpha=T^*y_0. \eee$$

证明:

(1)首先说明 \eqref{E} 是可唯一求解的. 这是 Lax-Milgram 定理的直接推论. 事实上, 由线性有界算子 $\alpha I_x+T^*T$ 决定的 $\scrX$ 上的共轭双线性泛函 $a(\cdot,\cdot)$ 是

  (a)有界 (bounded) 的: $$\bex \sev{a(x_1,x_2)}= \sev{\sef{\alpha x_1+T^*Tx_1,x_2}} \leq \sex{\alpha+\sen{T}^2}\sen{x_1}\sen{x_2}; \eex$$

  (b)强制 (coercive) 的: $$\bex a(x,x)=\sef{\alpha x+T^*Tx,x}\geq \alpha\sen{x}^2. \eex$$

(2)其次说明 $$\bex x\in \scrX-\sed{x^\alpha}\ra J_\alpha(x)>J_\alpha(x^\alpha). \eex$$ 实际上, 令 $v^\alpha=x-x^\alpha\neq 0$, 有 $$\bex J_\alpha(x)&=&J\sex{v^\alpha+x^\alpha}\\ &=&\sen{T\sex{v^\alpha+x^\alpha}-y}^2 +\alpha\sen{v^\alpha+x^\alpha}^2\\ &=&\sen{Tv^\alpha}^2 +\sef{Tv^\alpha,Tx^\alpha-y_0} +\sef{Tx^\alpha-y_0,Tv^\alpha} +\sen{Tx^\alpha-y_0}^2\\ & &+\alpha\sen{v^\alpha}^2 +\alpha\sef{v^\alpha,x^\alpha} +\alpha\sef{x^\alpha,v^\alpha} +\alpha\sen{x^\alpha}^2\\ &=&\sen{Tv^\alpha}^2+\alpha\sen{v^\alpha}^2\\ & &+\sef{v^\alpha,T^*\sex{Tx^\alpha-y_0}+\alpha x^\alpha} +\sef{v^\alpha,T^*\sex{Tx^\alpha-y_0}+\alpha x^\alpha}\\ & &+\sen{Tx^\alpha-y_0}^2+\alpha\sen{x^\alpha}^2\\ &=&\sen{Tv^\alpha}^2+\alpha\sen{v^\alpha}^2+J_\alpha(x^\alpha)\\ &>&J_\alpha(x^\alpha). \eex$$ 

目录
相关文章
[家里蹲大学数学杂志]第433期一个极限
求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$    解答: 还记得对数不等式么: $$\bex \dfrac{x}{1+x}
998 0
[家里蹲大学数学杂志]第426期一个无理数的证明
试证: $\dps{\cos\frac{2\pi}{5}}$ 为无理数.   证明: 设 $$\bex z=e^{i\frac{2\pi}{5}}, \eex$$ 则 $$\beex \bea z^5&=e^{i2\pi}=1,\\ (z-1)(z^4+z^3+z^2+z+1)&=0,\\ z^4+z^3+z^2+z+1&=0,\\ z^2+z+1+z^{-1}+z^{-2}&=0.
600 0
[家里蹲大学数学杂志]第425期一个定积分的计算
试求 $$\bex I=\int_2^4\frac{\sqrt{\ln (9-x)}}{\sqrt{\ln(9-x)}+\sqrt{\ln(x+3)}}\rd x. \eex$$ 解答: $$\beex \bea I&=\int_4^2 \frac{\sqrt{\ln(t+3)}}{\sqrt{\...
782 0
[家里蹲大学数学杂志]第413期插值不等式
设 $$\bex k\geq 2,\quad f\in C^k(\bbR),\quad M_j=\sup_{x\in\bbR}|f^{(j)}(x)|\ (j=0,1,\cdots,k). \eex$$ 则 $$\bex M_j\leq 2^\frac{j(k-j)}{2}M_0^{1-\frac{j}{k}}M_k^\frac{j}{k}\ (j=0,1,\cdots,k).
754 0
|
Perl
[家里蹲大学数学杂志]第410期定积分难题
  1. (1). 设 $x\geq 0$, $n$ 为自然数, 证明: $$\bex x^n\geq n(x-1)+1; \eex$$ (2). $\forall\ n$, 求证: $$\bex \int_0^{1+\frac{2}{\sqrt{n}}}x^n\rd x>2; \eex$$ (3).
810 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1022 0
|
前端开发 rax Perl
[家里蹲大学数学杂志]第243期对合矩阵的两个性质
设 $n$ 阶矩阵 $A$ 满足 $A^2=E$. 证明: (1) $A$ 相似于形如 $\dps{\sex{\ba{cc} E_s&\\ &-E_{n-s} \ea}}$ 的矩阵; (2) 对于任何正整数 $m,k$, 都有 $$\bex \rank(A+E)^m+\rank(A-E)^k=n.
637 0
|
资源调度 定位技术 Python
[家里蹲大学数学杂志]第299期丘成桐大学生数学竞赛2014年几何与拓扑个人赛试题
1.Let $X$ be the quotient space of $\bbS^2$ under the identifications $x\sim -x$ for $x$ in the equator $\bbS^1$.
878 0
|
Perl
[家里蹲大学数学杂志]第053期Legendre变换
$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$.
660 0
[家里蹲大学数学杂志]第294期微分方程与数学物理问题习题集
第294期_微分方程与数学物理问题习题集   摘要: 本文给出了作者于 2011 年 10 月 10 日至 2011 年 10 月 31 日 看 Nail H. Ibragimov 的 时留下的习题全部解答.
1059 0