很打瞌睡,就此写下:
Having to be proud and brave in front of everybody.
I think I'm only staying alive to satisfying you.
Yes, you can sift the flour, if that's what makes you happy.
中午去做了个家教,数学的,高一的,我真是太有才了。中午回来也没睡,就到峥嵘这玩起来了。看了个那个"Alex"的"The Hours",一个小时过去了,郁闷死了,摘了上面几句,就算完事吧。一点劲都没有。还是更喜欢看那个"My commitment"。那里有很多的东西,好句子一个接一个,天天早上都要读好些会儿,也写几个:
We've arrived at these and various rules through a process of trial and error over the course of our four-year relationship.
She(Mother) must hold the world's record for being the world's most optimistic mother.
She believed in marriage with a strength and a vigor that I've never equalled.
My mum was the only person in the world who still called Dan.
It was nice to be fussed over like this.To know that there was someone in the world who,no matter you were a convicted homicidal maniac, a porn baron or crack addict, would love you unconditionally...
关于英语说到这,我这人生也太单调了monotone,不过那样的话,有很好的性质,比如最多只有可数个不连续点,可积的,有界变差的,可以逼近很多的东西。对,就说数学了:
现代偏微分方程:现在感觉入门了,正在往前走,当然还有许多的证明细节未能一一罗列,但最起码基本方向知道了,而且也能自己做些推倒。回顾下:
第二章是椭圆型方程的$L^2$理论,通过积分把强解换成弱解,而后通过正则化又得强解,中间这个过渡就是现代的意思了。弱解的存在性是通过函数空间和Riesz表示定理,Lax-Milgram定理来的,那是些很好的定理,顺便也把Gilbarg-Trudinger的第五章关于泛函分析的内容结束了。弱解的正则性是通过差分(是这个词么)来达到的,差分有很好的性质,而Sobolev空间中差分的定理就成了正则性的基本事实。那个test function取得是那样的好,以致$L^2$范数有界,可以导出二阶弱导数。弱解的唯一性那是很好的了。最后还有个Fredolm Alternative,说的是B^*空间中的紧线性算子的性质,把齐边界条件和非齐边界条件分开了。
第三章还没看完,是关于抛物型方程的$L^2$理论,也一样,先构造弱解,还有好几个等价的定义,那是数学分析的纯形式推导。我们的存在性因为初边值条件的不同而选用了不同的方法,对于抛物边界上为零的情形,用Lax-Milgram的个变体,及其Hilbert空间的个定理,很好的证明。对于初值不为零的情形,用Rothe方法,昨天用了整整一上午才看完,看完了又到外面整整想了半个小时。于是有“诗”如下:
其中奥妙;
着实难料。
科学陡峭;
需你常笑。
方法其实都很类似,与数学分析的没什么两样。对t进行等距分割,对这些分割点t,我们有椭圆型方程了,而后构造对所有的t都有的逼近解,那是相当不错的方法,在中间就是个线性函数。之后因为要使解有收敛子列(列紧),做相当的估计,那个也是相当精妙的,之后对极限看是否满足弱解的定义咯。还有后面的Galerkin方法,是泛函分析威力的场所,就到这里,还没看完。可分的Hilbert空间中的有界线性自伴紧算子有特征值,他们的特征向量构成一组正规正交基。一个一个做组合,是的每个组合都有弱解的样式,而后去逼近。
泛函分析,那是个很长的学问。Lars Harmonder的Linear Functional Analysis是很不错的,可惜自己资质太低,看了点就不想看,也只弄懂皮毛,上课时浏览吧。张恭庆的泛函分析,现在重读,发现能作出相当多的题目了,那种感觉真是妙不可言,有的让人吃惊,有的让人势不可挡。今天晚上开始,学Rudin的Functional Analsyis吧,那个可能更容易点,没关系,反正也是个所谓的famous吧,别亏待了自己。
下面就用英文写了,那样的话,就没什么不好意思了,希望很多的人看不懂,而自己却能聊以自慰:
I'm destined to be a mathematician...I'm almost blind, and I've no other choice but mathematics...And I'm eager of knowledge and the truth of nature. I was born on Jan,23th,1987...What a fabulous day! Since 987 is the reverse of 789,and 0123 is the only consequent number which can be occured in month and day...And I can introduce my birthday like this: after exactly 5/4 centuries, another mathematician like David Hilbert was born...I've the same birthday as him, and I've the same first name as him...My first name is David, which came from the big stomach I have when I was an undergraduate...Surely, I don't even mention it, since I can bear it...But when I write down these in English words fluently, I'm confident....and a little proud...Also, Lars Hormander has only one day which differ with my birthday, that is, his birthday is on Jan,24th...Fantastic...and I've the same birthday as Newton in lunar canlendar...we were both born on the "small" spring festival in each other's country...And Einstein, his born year is 1879....change a little,it is me...Aha...I'm a fun of astrology and numerology...I like this sometimes,this gives me confidence and pleasure, relief of the tiredness...regain the strength to go on...