[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

简介: If $\sen{A}

If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.

 

Solution.  Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \eex$$ Due to the completeness of the matrix space, $\dps{\sum_{n=0}^\infty A_n}$ converges. Since $$\bex (I-A)(I+\cdots+A^{n-1})=I-A^n, \eex$$ we may take limit to get $$\bex (I-A)\cdot \sum_{n=0}^\infty A^n=I. \eex$$

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
661 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$   Solution. By Exercise I.
566 0
|
应用服务中间件 AHAS Perl
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.6
Let $A$ be a nilpotent operator. Show how to obtain, from aJordan basis for $A$, aJordan basis of $\wedge^2A$.
836 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
635 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7
Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot...
615 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
458 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2
Show that the following statements are equivalent: (1). $A$ is positive. (2). $A=B^*B$ for some $B$.
765 0
|
Perl
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9
(1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues.
551 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and its inverse is $$\bex \sex{\ba{cc} I&-A\\ 0&I \ea}.
824 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.6
If $A$ is a contraction, show that $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*. \eex$$ Use this to show that if $A$ is a contraction on $\scrH$, then t...
797 0