[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

简介: The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices.

The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. The set of all unitary matrices is a compact subset of all $n\times n$ matrices. These two sets are also groups under multiplication. They are called the general linear group $\GL(n)$ and the unitary group $\U(n)$, respectively.

 

Solution.  

 

(1). $\GL(n)$ is a dense subset of $\M(n)$, the set of all $n\times n$ matrices. Indeed, by the Schur triangularisation, for each matrix $A$, there exists a unitary $U$ such that $$\bex A=U\sex{\ba{cccc} \vLm_1&&*\\ &\vLm_1&\\ &&\ddots&\\ &&&\vLm_s \ea},\quad \vLm_i=\sex{\ba{ccc} \lm_i&&*\\ &\ddots&\\ &&\lm_i \ea},\quad \lm_1=0,\quad \lm_i \neq 0,\ 2\leq i\leq s. \eex$$ We may just replace the $\lm_1=0$ by $\ve>0$ to get an invertible matrix $B$ such that $\sen{A-B}_2=\ve^2$.

 

(2). $\GL(n)$ is an open subset of $\M(n)$. In fact, by continuity, $$\bex \det A_n=0,\quad A_n\to A\ra \det A=0. \eex$$

 

(3). $\U(n)$ is a bounded, closed subset of $\M(n)$.

目录
相关文章
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7
Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot...
603 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.9
(Schur's Theorem) If $A$ is positive, then $$\bex \per(A)\geq \det A. \eex$$   Solution. By Exercise I.
552 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4
If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$.
699 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex$$ is equal to the determinant of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
622 0
|
资源调度
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is equal to the permanent of the $k\times k$ matrix $\sex{\sef{x_i,y_j}}$.
550 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.2
The elementary tensors $x\otimes \cdots \otimes x$, with all factors equal, are all in the subspace $\vee^k\scrH$.
450 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1\leq j\leq k$, can be found so that $a_{ij}=\sef{x_i,x_j}$ for all $i,j$.
646 0
|
Perl
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.1
Let $A=A_1\oplus A_2$. Show that   (1). $W(A)$ is the convex hull of $W(A_1)$ and $W(A_2)$; i.e., the smallest convex set containing $W(A_1)\cup W(A_2)$.
497 0
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.2
Show that the following statements are equivalent: (1). $A$ is positive. (2). $A=B^*B$ for some $B$.
738 0