[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.10

简介: 对自然数 $n\geq 2$, 证明 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t

对自然数 $n\geq 2$, 证明 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t<\frac{2+\ln n}{2}. \eex$$

 

证明: 仍用 4.3.9 的那两个不等式. 对 $\dps{\forall\ 0<x<\frac{\pi}{2}}$, 有 $$\beex \bea \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t &=\frac{1}{\pi}\int_0^x+\int_x^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t\\ &\leq \frac{1}{\pi}\int_0^x \frac{(2n+1)|\sin t|}{|\sin t|}\rd t +\frac{1}{\pi}\int_x^\frac{\pi}{2}\frac{1}{\frac{2t}{\pi}}\rd t\\ &<\frac{2n+1}{\pi}x +\frac{1}{2}\ln\frac{\pi}{2x}\\ &\equiv f(x). \eea \eeex$$ 由 $$\bex f'(x)=\frac{2n+1}{\pi}-\frac{1}{2x}\sedd{\ba{ll} <0,&0<x<\frac{\pi}{2(2n+1)}\\ >0,&\frac{\pi}{2(2n+1)}<x<\frac{\pi}{2} \ea} \eex$$ 即知 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t \leq f\sex{\frac{\pi}{2(2n+1)}} =\frac{1}{2}+\frac{\ln (2n+1)}{2} <\frac{1+\ln (en)}{2}=\frac{2+\ln n}{2}. \eex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.21
设 $f(x)$ 的一阶导数在 $[0,1]$ 上连续, 且 $f(0)=f(1)=0$, 求证: $\dps{\sev{\int_0^1 f(x)\rd x}\leq \frac{1}{4}\max_{0\leq x\leq 1}|f'(x)|}$.
702 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.17
设在 $\dps{\sex{0,\frac{\pi}{2}}}$ 内连续函数 $f(x)>0$, 且满足 $$\bex f^2(x)=\int_0^x f(t)\frac{\tan t}{\sqrt{1+2\tan^2t}}\rd t.
907 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.11
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    函数 $f(x)$ 在 $[a,b]$ 上连续, 并且对于任何区间 $[\al,\beta]$ ($a\leq \al
972 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.5
若 $f'(x)$ 在 $[0,2\pi]$ 上拦蓄, 且 $f'(x)\geq 0$, 则对任意正整数 $n$, 有 $$\bex \sev{\int_0^{2\pi}f(x)\sin nx\rd x}\leq \frac{2[f(2\pi)-f(0)]}{n}.
579 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.6
$f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}.
791 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.4
把满足下述条件 (1) 和 (2) 的实函数 $f$ 的全体记作 $F$:   (1). $f(x)$ 在闭区间 $[0,1]$ 上连续, 并且非负;   (2). $f(0)=0$, $f(1)=1$.
542 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.25
对函数 $$\bex \zeta(s)=\vsm{n}\frac{1}{n^s}\quad\sex{s>1}, \eex$$ 证明: $\dps{\zeta(s)=s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x}$, 其中 $\sez{x}$ 为 $x$ 的整数部分.
650 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.20
设 $a_n>0$, $\dps{\vsm{n}a_n}$ 收敛, $na_n$ 单调, 证明: $$\bex \vlm{n}na_n\ln n=0. \eex$$   证明: 又题意, $na_n\searrow 0$.
859 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.11
证明: 若 $a_n>0$, $a_n\searrow 0$, 则 $\dps{\vsm{n}a_n}$ 与 $\dps{\vsm{m}p_m2^{-m}}$ ($p_m=\max\sed{n;a_n\geq 2^{-m}}$) 同时敛散.
888 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.8
设正项级数 $\dps{\vsm{n}a_n}$ 收敛. 证明: 级数 $$\bex \vsm{n}\frac{a_n}{\sqrt{r_{n-1}}+\sqrt{r_n}} \eex$$ 仍收敛, 其中 $$\bex r_n=\sum_{k=n+1}^\infty a_k.
771 0
下一篇
无影云桌面