[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.10

简介: 对自然数 $n\geq 2$, 证明 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t

对自然数 $n\geq 2$, 证明 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t<\frac{2+\ln n}{2}. \eex$$

 

证明: 仍用 4.3.9 的那两个不等式. 对 $\dps{\forall\ 0<x<\frac{\pi}{2}}$, 有 $$\beex \bea \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t &=\frac{1}{\pi}\int_0^x+\int_x^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t\\ &\leq \frac{1}{\pi}\int_0^x \frac{(2n+1)|\sin t|}{|\sin t|}\rd t +\frac{1}{\pi}\int_x^\frac{\pi}{2}\frac{1}{\frac{2t}{\pi}}\rd t\\ &<\frac{2n+1}{\pi}x +\frac{1}{2}\ln\frac{\pi}{2x}\\ &\equiv f(x). \eea \eeex$$ 由 $$\bex f'(x)=\frac{2n+1}{\pi}-\frac{1}{2x}\sedd{\ba{ll} <0,&0<x<\frac{\pi}{2(2n+1)}\\ >0,&\frac{\pi}{2(2n+1)}<x<\frac{\pi}{2} \ea} \eex$$ 即知 $$\bex \frac{1}{\pi}\int_0^\frac{\pi}{2}\sev{\frac{\sin (2n+1)t}{\sin t}}\rd t \leq f\sex{\frac{\pi}{2(2n+1)}} =\frac{1}{2}+\frac{\ln (2n+1)}{2} <\frac{1+\ln (en)}{2}=\frac{2+\ln n}{2}. \eex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.15
$[a,b]$ 上的连续函数列 $\varphi_1,\varphi_2,\cdots,\varphi_n,\cdots$ 满足 $\dps{\int_a^b \varphi_n^2(x)\rd x=1}$.
716 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.14
设 $f(x)$ 处处连续, $\dps{F(x)=\frac{1}{2\delta}\int_{-\delta}^\delta f(x+t)\rd t}$, 其中 $\delta$ 为任何正数. 证明:   (1).
585 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.17
设在 $\dps{\sex{0,\frac{\pi}{2}}}$ 内连续函数 $f(x)>0$, 且满足 $$\bex f^2(x)=\int_0^x f(t)\frac{\tan t}{\sqrt{1+2\tan^2t}}\rd t.
880 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.13
证明: 如果在 $(-\infty,+\infty)$ 上的连续函数 $f(x)$ 满足 $$\bex \int_x^{x+1}f(x)\rd t=0, \eex$$ 那么 $f(x)$ 是周期函数.   证明: 对 $x$ 求导有 $$\bex f(x+1)-f(x)=0, \eex$$ 而 $f$ 为 $1$ 周期函数.
670 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.18
设 $f(x)$ 是在 $(-\infty,+\infty)$ 内的可微函数, 且满足:   (1). $f(x)>0$;   (2). $|f'(x)|\leq m|f(x)|$, 其中 $0
727 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.29
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    证明: $\dps{\vlm{n}\sed{\sum_{k=2}^n \frac{1}{k\ln k}-\ln\ln n}}$ 存在 (有限).
1116 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.7
设 $a_n=n^{n^{\alpha}}-1$, 讨论级数 $\dps{\vsm{n}a_n}$ 的敛散性.   解答: 当 $\al
817 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.6
证明下列级数收敛:   (1). $\dps{\vsm{n}\sez{\frac{1}{n}-\ln\sex{1+\frac{1}{n}}}}$;   (2). $\dps{\vsm{n}\sez{e-\sex{1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}}}}$.
788 0