2017年浙江省大学生高等数学 (微积分) 竞赛试题 (工科类)

简介: 更多试题见: http://www.cnblogs.com/zhangzujin/p/6791306.html   参考解答见: http://www.cnblogs.com/zhangzujin/p/3527416.

更多试题见: http://www.cnblogs.com/zhangzujin/p/6791306.html

 

参考解答见: http://www.cnblogs.com/zhangzujin/p/3527416.html

 

目录
相关文章
|
开发工具
2017年浙江省大学生高等数学 (微积分) 竞赛试题 (数学类)
  更多试题见: http://www.cnblogs.com/zhangzujin/p/6791306.html   参考解答见: http://www.cnblogs.com/zhangzujin/p/3527416.
1906 0
华东师范大学2017年数学分析考研试题
转自(赵江彦): http://www.math.org.cn/forum.php?mod=viewthread&tid=37148
1026 0
北京大学2017年数学分析考研试题
2017年北京大学硕士研究生数学分析真题 1.(10分) 证明:$$\lim_{n \to +\infty }\int_{0}^{\frac{\pi }{2}}\frac{\sin ^nx}{\sqrt{\pi -2x}}dx=0.
1358 0
中国科学院大学2017年数学分析考研试题
$ \lim \limits_{x \rightarrow \infty}x^{\frac{3}{2}}(\sqrt {2+x}-2\sqrt{1+x}+\sqrt{x}) $ 已知$ a_{n+1}(a_n+1)=1, a_0=0 $,证明数列的极限存在,并且求出极限值 f(x)三次连续可微,...
886 0
|
移动开发
北京大学2016年数学分析考研试题
本文来自TangSong.   1.($15'$) 用开覆盖定理证明闭区间上连续函数必一致连续. 2.$(15')$ $f(x)$ 是 $[a,b]$ 上的实函数.叙述关于Riemann和 \[\sum_{k=1}^n f(t_i)(x_i-x_{i-1})\] 的Cauchy准则 (不用证明) 并用你叙述的Cauchy准则证明闭区间上的单调函数可积.
715 0
|
Perl
中国科学院大学2016年数学分析考研试题
来自poorich及@xuzheng3254321.   1. ($20'$) 计算极限 $$\bex \lim_{x\to 0}\sex{\frac{e^x+e^{2x}+\cdots+e^{nx}}{n}}^\frac{1}{x}.
867 0
|
Perl
浙江大学2015年数学分析考研试题
1. 求极限 $$\bex \vlm{n}\dfrac{(n^2+1)(n^2+2)\cdots(n^2+n)}{(n^2-1)(n^2-2)\cdots(n^2-n)}. \eex$$   2. 求 $$\bex \lim_{x\to 0^+}\sez{\frac{1}{x^5}\int_0^...
979 0
|
Python Perl
北京大学2015年数学分析考研试题
  1. 计算 $$\bex \lim_{x\to 0^+}\dfrac{\int_0^x e^{-t^2}\rd t-x}{\sin x-x}. \eex$$     2. 讨论广义积分 $\dps{\int_1^\infty \sez{\ln \sex{1+\dfrac{1}{x}}-\sin \dfrac{1}{x}}}$ 的敛散性.
786 0