北京大学2015年数学分析考研试题

简介:   1. 计算 $$\bex \lim_{x\to 0^+}\dfrac{\int_0^x e^{-t^2}\rd t-x}{\sin x-x}. \eex$$     2. 讨论广义积分 $\dps{\int_1^\infty \sez{\ln \sex{1+\dfrac{1}{x}}-\sin \dfrac{1}{x}}}$ 的敛散性.

 

 

1. 计算 $$\bex \lim_{x\to 0^+}\dfrac{\int_0^x e^{-t^2}\rd t-x}{\sin x-x}. \eex$$

 

 

2. 讨论广义积分 $\dps{\int_1^\infty \sez{\ln \sex{1+\dfrac{1}{x}}-\sin \dfrac{1}{x}}}$ 的敛散性.

 

 

3. 函数 $$\bex f(x,y)=\sedd{\ba{ll} \sex{1-\cos \dfrac{x^2}{y}}\sqrt{x^2+y^2},&y\neq 0;\\ 0,&y=0. \ea} \eex$$ $f(x,y)$ 在 $(0,0)$ 处可微么? 证明你的结论.

 

 

4. 计算 $$\bex \int_L e^x[(1-\cos y)\rd x-(y-\sin y)\rd y], \eex$$ 其中 $L$ 去曲线 $y=\sin x$ 从 $(0,0)$ 到 $(\pi,0)$.

 

 

5. 证明函数项级数 $$\bex \sum_{n=0}^\infty \dfrac{\cos nx}{n^2+1} \eex$$ 在 $(0,2\pi)$ 上一致收敛, 并且在 $(0,2\pi)$ 上有连续导数.

 

 

6. 设 $$\bex x_0=1,\quad x_{n+1}=\dfrac{3+2x_n}{3+x_n},\quad (n\geq 0). \eex$$ 证明数列 $\sed{x_n}$ 收敛并求其极限.

 

 

7. 设函数 $f\in C^2(\bbR^2)$, 且对任意 $(x,y)\in\bbR^2$, $$\bex \dfrac{\p^2f}{\p x^2}(x,y)+\dfrac{\p^2f}{\p y^2}(x,y)>0. \eex$$ 证明: $f$ 没有极大值点.

 

 

8. 设 $f$ 在 $[a,b]$ 上连续, 在 $(a,b)$ 内可导, 且 $f(b)>f(a)$, $\dps{c=\dfrac{f(b)-f(a)}{b-a}}$. 证明 $f$ 必具备下述两条性质中的一个:

(1). 任意 $x\in [a,b]$, 有 $f(x)-f(a)=c(x-a)$.

(2). 存在 $\xi\in (a,b)$ 使得 $f'(\xi)>c$.

 

 

9. 设 $F:\bbR^3\to \bbR^2$ 是 $C^1$ 映射, $x_0\in\bbR^3$, $y_0\in\bbR^2$, $F(x_0)=y_0$, 且 $F$ 在 $x_0$ 处的 Jacobi 矩阵 $D F(x_0)$ 的秩为 $2$. 证明: 存在 $\ve>0$, 以及 $C^1$ 映射 $\gamma(t):\ (-\ve,\ve)\to\bbR^3$, 使得 $\gamma'(0)$ 是非零向量, 且 $F(\gamma(0))=y_0$.

 

 

10. 设开集 $U\subset\bbR^n$, $f:U\to \bbR^n$ 是同胚映射, 且 $f$ 在 $U$ 上一致连续. 证明: $U=\bbR^n$.

 

参考解答见家里蹲大学数学杂志.

 

目录
相关文章
日期累加(北京理工大学考研机试题)
日期累加(北京理工大学考研机试题)
165 0
日期累加(北京理工大学考研机试题)
成绩排序2 (清华大学考研机试题)
成绩排序2 (清华大学考研机试题)
179 0
成绩排序2 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
238 0
成绩排序 (清华大学考研机试题)
|
机器学习/深度学习
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]行列式的计算)
(2014-04-18 from 352558840@qq.com [南开大学2014年高等代数考研试题]) 设 $n$ 阶行列式 $\sev{\ba{cccc} a_{11}&\cdots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{n1}&\cdots&a_{nn} \ea}=1,$ 且满足 $a_{ij}=-a_{ji}, i,j=1,2,\cdots,n$.
1038 0
[再寄小读者之数学篇] (2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]一个秩等式)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]) 设 ${\bf A}$ 为 $s\times n$ 矩阵. 证明: $$\bex s-\rank({\bf E}_s-{\bf A}{\bf A}^T)=n-\rank({\bf E}_n-{\bf A}^T{\bf A}).
1281 0
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]二次型的零点)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]) 设 ${\bf A}$ 为实对称矩阵, 存在线性无关的向量 ${\bf x}_1,{\bf x}_2$, 使得 ${\bf x}_1^T{\bf A}{\bf x}_1>0$, ${\b...
850 0
|
资源调度
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]可交换的线性变换)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]) 设 $\sigma,\tau$ 为线性变换, 且 $\sigma$ 有 $n$ 个不同的特征值.
822 0
|
Perl C++
[再寄小读者之数学篇](2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解)
(2014-04-18 from 352558840@qq.com [南开大学 2014 年高等代数考研试题]特征多项式的互素分解) 设 $f(x)$ 为 ${\bf A}$ 的特征多项式, 且存在互素的次数分别为 $p,q$ 的多项式 $g(x),h(x)$ 使得 $f(x)=g(x)h(x)$.
873 0

热门文章

最新文章

  • 1
    基于ssm的考研图书电子商务平台,附源码+数据库+论文
    153
  • 2
    2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
    207
  • 3
    2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    215
  • 4
    2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    170
  • 5
    2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    188
  • 6
    2024重生之回溯数据结构与算法系列学习之王道第2.3章节之线性表精题汇总二(5)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    143
  • 7
    2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    175
  • 8
    2024重生之回溯数据结构与算法系列学习之顺序表习题精讲【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    173
  • 9
    2024重生之回溯数据结构与算法系列学习之顺序表【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    155
  • 10
    2024重生之回溯数据结构与算法系列学习【无论是王道考研人还真爱粉都能包会的;不然别给我家鸽鸽丢脸好嘛?】
    123