MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.

简介: [hxsyl@CentOSMaster hadoop-2.6.4]$ mahout MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.
[hxsyl@CentOSMaster hadoop-2.6.4]$ mahout
MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.
Running on hadoop, using HADOOP_HOME=/home/hxsyl/Spark_Relvant/hadoop-2.6.4
HADOOP_CONF_DIR=/home/hxsyl/Spark_Relvant/hadoop-2.6.4/etc/hadoop
MAHOUT-JOB: /home/hxsyl/Spark_Relvant/mahout-distribution-0.6/mahout-examples-0.6-job.jar
An example program must be given as the first argument.
Valid program names are:
  arff.vector: : Generate Vectors from an ARFF file or directory
  baumwelch: : Baum-Welch algorithm for unsupervised HMM training
  canopy: : Canopy clustering
  cat: : Print a file or resource as the logistic regression models would see it
  cleansvd: : Cleanup and verification of SVD output
  clusterdump: : Dump cluster output to text
  clusterpp: : Groups Clustering Output In Clusters
  cmdump: : Dump confusion matrix in HTML or text formats
  cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
  cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
  dirichlet: : Dirichlet Clustering
  eigencuts: : Eigencuts spectral clustering
  evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
  fkmeans: : Fuzzy K-means clustering
  fpg: : Frequent Pattern Growth
  hmmpredict: : Generate random sequence of observations by given HMM
  itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
  kmeans: : K-means clustering
  lda: : Latent Dirchlet Allocation
  ldatopics: : LDA Print Topics
  lucene.vector: : Generate Vectors from a Lucene index
  matrixdump: : Dump matrix in CSV format
  matrixmult: : Take the product of two matrices
  meanshift: : Mean Shift clustering
  minhash: : Run Minhash clustering
  pagerank: : compute the PageRank of a graph
  parallelALS: : ALS-WR factorization of a rating matrix
  prepare20newsgroups: : Reformat 20 newsgroups data
  randomwalkwithrestart: : compute all other vertices' proximity to a source vertex in a graph
  recommendfactorized: : Compute recommendations using the factorization of a rating matrix
  recommenditembased: : Compute recommendations using item-based collaborative filtering
  regexconverter: : Convert text files on a per line basis based on regular expressions
  rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
  rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
  runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
  runlogistic: : Run a logistic regression model against CSV data
  seq2encoded: : Encoded Sparse Vector generation from Text sequence files
  seq2sparse: : Sparse Vector generation from Text sequence files
  seqdirectory: : Generate sequence files (of Text) from a directory
  seqdumper: : Generic Sequence File dumper
  seqwiki: : Wikipedia xml dump to sequence file
  spectralkmeans: : Spectral k-means clustering
  split: : Split Input data into test and train sets
  splitDataset: : split a rating dataset into training and probe parts
  ssvd: : Stochastic SVD
  svd: : Lanczos Singular Value Decomposition
  testclassifier: : Test the text based Bayes Classifier
  testnb: : Test the Vector-based Bayes classifier
  trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
  trainclassifier: : Train the text based Bayes Classifier
  trainlogistic: : Train a logistic regression using stochastic gradient descent
  trainnb: : Train the Vector-based Bayes classifier
  transpose: : Take the transpose of a matrix
  validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
  vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
  vectordump: : Dump vectors from a sequence file to text
  viterbi: : Viterbi decoding of hidden states from given output states sequence
  wikipediaDataSetCreator: : Splits data set of wikipedia wrt feature like country
  wikipediaXMLSplitter: : Reads wikipedia data and creates ch

  刚开始以为这样是错误的,后来发现这样是对的,不设置的MAHOUT_LOCAL的话在hadoop运行,否则单机运行。

  值得注意的是修改/etc/profile的时候必须在root下,在hxsyl下几遍wq!也不行,在root下source以后,mahout提示类似上面的信息(用户不一样),然后切换到hxsyl下一直提示没有设置HADOOP_CONF_DIR,我明明设置了,然后我在hxsyl下source就好了。

目录
相关文章
|
分布式计算 Hadoop 大数据
|
存储 分布式计算 Hadoop
147 Mahout运行在Hadoop集群
147 Mahout运行在Hadoop集群
52 0
|
机器学习/深度学习 存储 分布式计算
Hadoop生态系统中的机器学习与数据挖掘技术:Apache Mahout和Apache Spark MLlib的应用
Hadoop生态系统中的机器学习与数据挖掘技术:Apache Mahout和Apache Spark MLlib的应用
|
分布式计算 Java Hadoop
Error: JAVA_HOME is incorrectly set. Please update C:\hadoop-2.5.1\conf\hadoop-env.cmd ‘
Error: JAVA_HOME is incorrectly set. Please update C:\hadoop-2.5.1\conf\hadoop-env.cmd ‘
|
Android开发 Windows 分布式计算
Hadoop on Windows with Eclipse -03- Set Environment Variables
Set Environment Variables The next step is to set up the PATH environment variable so that Eclipse IDE can access Cygwin commands here To set environm...
1143 0
|
分布式计算 Java Hadoop
Hadoop启动报Error: JAVA_HOME is not set and could not be found解决办法
Hadoop安装完后,启动时报Error: JAVA_HOME is not set and could not be found. 解决办法: 修改/etc/hadoop/hadoop-env.sh中设JAVA_HOME。
5458 0
|
分布式计算 Hadoop Scala
基于hadoop2.7集群的Spark2.0,Sqoop1.4.6,Mahout0.12.2完全分布式安装
写在前边的话        hadoop2.7完全分布式安装请参考:点击阅读,继任该篇博客之后,诞生了下面的这一篇博客        基本环境:               CentOS 6.5,Hadoop 2.
1264 0
|
分布式计算 算法 Hadoop

相关实验场景

更多