java中subString、split、stringTokenizer三种截取字符串方法的性能比较(转)

简介: 最近在阅读java.lang下的源码,读到String时,突然想起面试的时候曾经被人问过:都知道在大数据量情况下,使用String的split截取字符串效率很低,有想过用其他的方法替代吗?用什么替代?我当时的回答很斩钉截铁:没有。

 

最近在阅读java.lang下的源码,读到String时,突然想起面试的时候曾经被人问过:都知道在大数据量情况下,使用String的split截取字符串效率很低,有想过用其他的方法替代吗?用什么替代?我当时的回答很斩钉截铁:没有。

google了一下,发现有2中替代方法,于是在这里我将对这三种方式进行测试。

测试的软件环境为:Windows XP、eclipse、JDK1.6。

测试用例使用类ip形式的字符串,即3位一组,使用”.”间隔。数据分别使用:5组、10组、100组、1000组、10000组、100000组。

实现

闲话不说,先上代码:

package test.java.lang.ref;

import java.util.Random;
import java.util.StringTokenizer;

/**
 * String测试类
 * @author xiaori.Liu
 *
 */
public class StringTest {
    
    public static void main(String args[]){
        String orginStr = getOriginStr(10);
        
        //////////////String.splic()表现//////////////////////////////////////////////
        System.out.println("使用String.splic()的切分字符串"); 
        long st1 = System.nanoTime(); 
        String [] result = orginStr.split("\\.");
        System.out.println("String.splic()截取字符串用时:" + (System.nanoTime()-st1));
        System.out.println("String.splic()截取字符串结果个数:" + result.length);
        System.out.println();
        
        //////////////StringTokenizer表现//////////////////////////////////////////////
        System.out.println("使用StringTokenizer的切分字符串"); 
        long st3 = System.nanoTime();  
        StringTokenizer token=new StringTokenizer(orginStr,".");  
        System.out.println("StringTokenizer截取字符串用时:"+(System.nanoTime()-st3)); 
        System.out.println("StringTokenizer截取字符串结果个数:" + token.countTokens());
        System.out.println();
        
        ////////////////////String.substring()表现//////////////////////////////////////////
        
        
        long st5 = System.nanoTime();  
        int len = orginStr.lastIndexOf(".");
        System.out.println("使用String.substring()切分字符串");  
        int k=0,count=0;  
        
        for (int i = 0; i <= len; i++) {  
         if(orginStr.substring(i, i+1).equals(".")){  
          if(count==0){  
           orginStr.substring(0, i);  
          }else{  
             orginStr.substring(k+1, i); 
             if(i == len){
               orginStr.substring(len+1, orginStr.length()); 
           }
          }
          k=i;count++;  
         }  
        }
        System.out.println("String.substring()截取字符串用时"+(System.nanoTime()-st5));  
        System.out.println("String.substring()截取字符串结果个数:" + (count + 1));
    }
    
    /**
     * 构造目标字符串
     * eg:10.123.12.154.154
     * @param len 目标字符串组数(每组由3个随机数组成)
     * @return
     */
    private static String getOriginStr(int len){
        
        StringBuffer sb = new StringBuffer();
        StringBuffer result = new StringBuffer();
        Random random = new Random();
        for(int i = 0; i < len; i++){
            sb.append(random.nextInt(9)).append(random.nextInt(9)).append(random.nextInt(9));
            result.append(sb.toString());
            sb.delete(0, sb.length());
            if(i != len-1)
                result.append(".");
        }
        
        return result.toString();
    }
}

改变目标数据长度修改getOriginStr的len参数即可。

5组测试数据结果如下图:

下面这张图对比了下,split耗时为substring和StringTokenizer耗时的倍数:

好吧,我又花了点儿时间,做了几张图表来分析这3中方式的性能。

首先来一张柱状图对比一下这5组数据截取所花费的时间:

从上图可以看出StringTokenizer的性能实在是太好了(对比另两种),几乎在图表中看不见它的身影。遥遥领先。substring花费的时间始终比split要少,但是耗时也在随着数据量的增加而增加。

下面3张折线图可以很明显看出split、substring、StringTokenizer3中实现随着数据量增加,耗时的趋势。

split是变化最大的,也就是数据量越大,截取所需要的时间增长越快。

substring则比split要平稳一点点,但是也在增长。

StringTokenizer则是表现最优秀的,基本上平稳,始终保持在5000ns一下。

结论

最终,StringTokenizer在截取字符串中效率最高,不论数据量大小,几乎持平。substring则要次之,数据量增加耗时也要随之增加。split则是表现最差劲的。

究其原因,split的实现方式是采用正则表达式实现,所以其性能会比较低。至于正则表达式为何低,还未去验证。split源码如下:

public String[] split(String regex, int limit) {
    return Pattern.compile(regex).split(this, limit);
} 

 

http://blog.csdn.net/songylwq/article/details/9016609

 

相关文章
|
22天前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
21天前
|
安全 Java 开发者
Java中WAIT和NOTIFY方法必须在同步块中调用的原因
在Java多线程编程中,`wait()`和`notify()`方法是实现线程间协作的关键。这两个方法必须在同步块或同步方法中调用,这一要求背后有着深刻的原因。本文将深入探讨为什么`wait()`和`notify()`方法必须在同步块中调用,以及这一机制如何确保线程安全和避免死锁。
35 4
|
21天前
|
Java
深入探讨Java中的中断机制:INTERRUPTED和ISINTERRUPTED方法详解
在Java多线程编程中,中断机制是协调线程行为的重要手段。了解和正确使用中断机制对于编写高效、可靠的并发程序至关重要。本文将深入探讨Java中的`Thread.interrupted()`和`Thread.isInterrupted()`方法的区别及其应用场景。
24 4
|
19天前
|
Java 数据处理 数据安全/隐私保护
Java处理数据接口方法
Java处理数据接口方法
24 1
|
3天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
27 6
|
18天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
16天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
18天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
11天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####