TCP之超时和重传

简介: RTT:往返时间;  RTO:Retransmission Timeout即超时重传时间; 关键点在于:超时和重传间隔的策略,即怎样确定超时间隔和重传间隔;   TCP中的四个定时器:2MSL定时器;重传定时器;坚持定时器;保活定时器; 首先是如何得到RTO值;(假设已经能测量到RTT值情况下...

RTT:往返时间;  RTO:Retransmission Timeout即超时重传时间;

关键点在于:超时和重传间隔的策略,即怎样确定超时间隔和重传间隔;

  TCP中的四个定时器:2MSL定时器;重传定时器;坚持定时器;保活定时器;

首先是如何得到RTO值;(假设已经能测量到RTT值情况下)

  RTO值是依赖RTT值来确定的;而鉴于网络环境的不稳定性,RTT总是变化的,

  RTT = 0.1*M  + 0.9*R;  M:当前测试的RTT值,R:历史RTT的值;

  RTO=@RTT;        @:一般取2;

详解过程参见RFC793,但是该方法是有缺陷的;

新的方法:

  Err = M - A;  M:当前RTT值, A:历史RTT值;

  平均值:A = A+gErr;  A:历史RTT值, g:常量, 

  方差:D = D + h(|Err| - D); D:历史D的值,h:常量

 (重点):RTO = A + 4D;

RTO的初始化: A=0; D=3;(即没有测的RTT情况下)

RTO的更新

当数据正常传输的情况下,我们就会用上面的公式来更新各个数据,并重开定时器,来保证下一个数据被顺利传输。要注意的是:重传的情况下,RTO不用上面的公式计算,而采用一种叫做“指数退避”的方式。例如:当RTO为1S的情况下,发生了数据重传,我们就用RTO=2S的定时器来重新传输数据,下一次用4S。一直增加到64S为止。

(也就是说:1、计时器计算是否超时是用的是几乎时时更新的RTO(估计器)时间,而重传时间间隔采用的是“指数退避(exponential backoff)“时间,

      2、并且在重传的情况下,不更新估计器的各种参数,

上述两点就是所谓的 Karn算法

);

估计器的更新:

  1. 一个连接中,有且仅有一个测量定时器被使用。也就是说,如果TCP连续发出3组数据,只有一组数据会被测量。
  2. ACK数据报不会被测量,原因很简单,没有ACK的ACK回应可以供结束定时器测量

示例: 

 1、传SYN:

    传输初始SYN所使用的RTO:RTO = A + 2D = 6s; (这个公式以后不再用了)

  2、上述SYN丢失了;然后超时了;因为6s内没有收到ACK;

    计算当前的RTO: RTO=A + 4D = 0 + 4×3 = 12s

  由于这是第一次超时,我们使用的倍数是2^0;RTO = 2^0*12 = 12s

拥塞避免算法与慢启动算法的结合:

  原因:数据在传输的时候不能只使用一个窗口协议,我们还需要有一个拥塞窗口来控制数据的流量,使得数据不会一下子都跑到网路中引起“拥塞”。曾经提到过,拥塞窗口最初使用指数增长的速度来增加自身的窗口,直到发生超时重传,再进行一次微调。但是没有提到,如何进行微调,拥塞避免算法和慢启动门限就是为此而生。

  拥塞避免算法和慢启动算法需要对每个连接维持两个变量:

    一个拥塞窗口cwnd,  和 一个慢启动门限ssthresh;它们的工作过程如下:

  1、对一个给定的连接,初始化cwnd为1个报文段,ssthresh为2^16=65535个字节;

  2、此时TCP输出的报文段不能超过cwnd和接收方通告窗口的大小,拥塞避免是c方使用的流量控制,通告窗口则是s方进行的流量控制,

    拥塞避免是c方感受到网络拥塞的估计;通告窗口与s方在该连接上的缓存大小有关;

  3、当拥塞发生时(超时或者收到重复的ACK;都表明丢包了), ssthresh被设置为当前窗口大小的一半(当前窗口即cwnd和通告窗口两者中的小值,但最少为2个报文段),

    如果是超时引起的拥塞,则cwnd被设置为1个报文段(这就是慢启动)

  4、当新的数据被对方确认时,就增加cwnd,但增加的方法依赖于我们是否正在进行慢启 动或拥塞避免。如果cwnd小于或等于ssthresh,则正在进行慢启动,否则正在进行拥塞避免。 慢启动一直持续到    我们回到当拥塞发生时所处位置的半时候才停止(因为我们记录了在步骤2 中给我们制造麻烦的窗口大小的一半),然后转为执行拥塞避免。

快速重传和快速恢复算法

这是数据丢包的情况下给出的一种修补机制。一般来说,重传发生在超时之后,但是如果发送端接受到3个以上的重复ACK的情况下,就应该意识到,数据丢了,需要重新传递。这个机制是不需要等到重传定时器溢出的,所以叫做快速重传,而重新传递以后,因为走的不是慢启动而是拥塞避免算法,所以这又叫做快速恢复算法。流程如下:

  1. 当收到第3个重复的ACK时,将ssthresh设置为当前拥塞窗口cwnd的一半。重传丢失的 报文段。设置cwnd为ssthresh加上3倍的报文段大小。
  2. 每次收到另一个重复的ACK时, cwnd增加1个报文段大小并发送1个分组(如果新的 cwnd允许发送)。
  3. 当下一个确认新数据的ACK到达时,设置cwnd为ssthresh(在第1步中设置的值)。这个 ACK应该是在进行重传后的一个往返时间内对步骤1中重传的确认。另外,这个ACK也应该 是对丢失的分组和收到的第1个重复的ACK之间的所有中间报文段的确认。这一步采用的是拥 塞避免,因为当分组丢失时我们将当前的速率减半

ICMP会引起重新传递么?

答案是:不会,TCP会坚持用自己的定时器,但是TCP会保留下ICMP的错误并且通知用户。

重新分组

TCP为了提高自己的效率,允许再重新传输的时候,只要传输包含重传数据报文的报文就可以,而不用只重传需要传输的报文。

  

 

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
网络协议 算法 网络性能优化
理解TCP协议三次握手、四次挥手、流量控制、拥塞控制 、重传机制
TCP概述 TCP是一种面向连接的协议,在发送数据前通信双方必须在彼此间建立一条连接 所谓的连接其实就是客户端和服务器的内存里保存一份关于对方的信息,如IP地址、端口 TCP是一种字节流,它会处理IP层的丢包、重复以及错误问题 在建立连接的过程中,双方交换的一些参数可以放到TCP的头部 总结 :TCP提供了一种可靠、面向连接、字节流、传输层的服务,采用三次握手建立一个连接,四次挥手关闭一个连接
305 2
理解TCP协议三次握手、四次挥手、流量控制、拥塞控制 、重传机制
|
缓存 网络协议 算法
计算机网络学习26:TCP/UDP对比区别、TCP流量控制、拥塞控制、超时重传时间的选择、可靠传输的实现
UDP: User Datagram Protocol 用户数据报协议 TCP: Transmission Control Protocol 传输控制协议 同时这里指的连接是指逻辑连接,而不是物理连接。
计算机网络学习26:TCP/UDP对比区别、TCP流量控制、拥塞控制、超时重传时间的选择、可靠传输的实现
|
缓存 网络协议 算法
你还在为 TCP 重传、滑动窗口、流量控制、拥塞控制发愁吗?看完图解就不愁了
来了,今天又来图解 TCP 了,小林可能会迟到,但不会缺席。 迟到的原因,主要是 TCP 巨复杂,它为了保证可靠性,用了巨多的机制来保证,真是个「伟大」的协议,写着写着发现这水太深了。。。 本文的全部图片都是小林绘画的,非常的辛苦且累,不废话了,直接进入正文吧,Go!
你还在为 TCP 重传、滑动窗口、流量控制、拥塞控制发愁吗?看完图解就不愁了
|
缓存 算法 网络协议
【计算机网络】传输层 : TCP 拥塞控制 ( 慢开始 | 拥塞避免 | 快重传 | 快恢复 )
【计算机网络】传输层 : TCP 拥塞控制 ( 慢开始 | 拥塞避免 | 快重传 | 快恢复 )
387 0
【计算机网络】传输层 : TCP 拥塞控制 ( 慢开始 | 拥塞避免 | 快重传 | 快恢复 )
|
网络协议 算法
TCP 重传机制
TCP 重传机制
286 0
|
网络协议 Java
【Java 网络编程】TCP 传输机制 ( 数据拆分 | 排序 | 顺序发送 | 顺序组装 | 超时重发 )
【Java 网络编程】TCP 传输机制 ( 数据拆分 | 排序 | 顺序发送 | 顺序组装 | 超时重发 )
274 0
【Java 网络编程】TCP 传输机制 ( 数据拆分 | 排序 | 顺序发送 | 顺序组装 | 超时重发 )
|
网络协议 算法
【计算机网络】传输层 : TCP 可靠传输 ( 可靠传输机制 | 快速重传机制 )
【计算机网络】传输层 : TCP 可靠传输 ( 可靠传输机制 | 快速重传机制 )
205 0
|
算法 网络协议 缓存
TCP/IP详解 卷1 第二十一章 TCP的超时与重传
21.1 引言 可靠性的保证之一就是超时重传 前面两个超时重传的例子 1)  ICMP端口不能到达时,TFTP客户使用UDP实现了一个简单的超时和重传机制,假定5s是一个适当是时间间隔,并每隔5s进行重传 2)  在向一个不存在的主机发送ARP的 例子中,可看到当TCP试图建立连接的时候,在每个重传之间使用一个较长的时延来重传SYN   对于每个连接,TCP管理4个不同的定时器: 1)  重传定时器使用于当希望收到另一端的确认 2)  坚持(persist)定时器使窗口大小信息保持不断流动,即使另一端关闭了其接收窗口。
1081 0
|
算法 网络协议 缓存

热门文章

最新文章