网络面试题:什么是 TCP/IP?

简介: 网络面试题:什么是 TCP/IP?

什么是 TCP/IP?

TCP/IP 是一类协议系统,它是用于网络通信的一套协议集合.传统上来说 TCP/IP 被认为是一个四层协议

1) 网络接口层:

主要是指物理层次的一些接口,比如电缆等.

2) 网络层:

提供独立于硬件的逻辑寻址,实现物理地址与逻辑地址的转换.

在 TCP / IP 协议族中,网络层协议包括 IP 协议(网际协议),ICMP 协议( Internet 互联网控制报文协议),以及 IGMP 协议( Internet 组管理协议).

3) 传输层:

为网络提供了流量控制,错误控制和确认服务.

在 TCP / IP 协议族中有两个互不相同的传输协议: TCP(传输控制协议)和 UDP(用户数据报协议).

4) 应用层:

为网络排错,文件传输,远程控制和 Internet 操作提供具体的应用程序

2.数据包

在 TCP / IP 协议中数据先由上往下将数据装包,然后由下往上拆包

在装包的时候,每一层都会增加一些信息用于传输,这部分信息就叫报头,当上层的数据到达本层的时候,会将数据加上本层的报头打包在一起,继续往下传递.

在拆包的时候,每一层将本层需要的报头读取后,就将剩下的数据往上传.

这个过程有点像俄罗斯套娃,所以有时候人们也会用俄罗斯套娃来形容这个过程.

3.网络接口层

这一块主要主要涉及到一些物理传输,比如以太网,无线局域网.这里就不做详细的介绍了

4.网络层

前面有提到,网络层主要就是做物理地址与逻辑地址之间的转换.

目前市场上应用的最多的是 32 位二进制的 IPv4 ,因为 IPv4 的地址已经不够用了,所以 128 位二进制的 IPv6 应用越来越广泛了(但是下面的介绍都是基于 IPv4 进行的)

1) IP:

TCP/IP 协议网络上的每一个网络适配器都有一个唯一的 IP 地址.

IP 地址是一个 32 位的地址,这个地址通常分成 4 端,每 8 个二进制为一段,但是为了方便阅读,通常会将每段都转换为十进制来显示,比如大家非常熟悉的 192.168.0.1

IP 地址分为两个部分:

  • 网络 ID
  • 主机 ID

但是具体哪部分属于网络 ID,哪些属于主机 ID 并没有规定.

因为有些网络是需要很多主机的,这样的话代表主机 ID 的部分就要更多,但是有些网络需要的主机很少,这样主机 ID 的部分就应该少一些.

绝大部分 IP 地址属于以下几类

  • A 类地址:IP 地址的前 8 位代表网络 ID ,后 24 位代表主机 ID。
  • B 类地址:IP 地址的前 16 位代表网络 ID ,后 16 位代表主机 ID。
  • C 类地址:IP 地址的前 24 位代表网络 ID ,后 8 位代表主机 ID。

这里能够很明显的看出 A 类地址能够提供出的网络 ID 较少,但是每个网络可以拥有非常多的主机

但是我们怎么才能看出一个 IP 地址到底是哪类地址呢?

对于 A、B、C 类别的 IP 地址,我们可以这样区分:

  1. A 类地址:在二进制形式下,A 类地址的第一位是0,所以其十进制形式的范围是1.0.0.0到126.0.0.0。换句话说,如果 IP 地址的第一段(十进制)在1到126之间,它就是一个 A 类地址。
  2. B 类地址:在二进制形式下,B 类地址的前两位是10,所以其十进制形式的范围是128.0.0.0到191.255.255.255。换句话说,如果 IP 地址的第一段(十进制)在128到191之间,它就是一个 B 类地址。
  3. C 类地址:在二进制形式下,C 类地址的前三位是110,所以其十进制形式的范围是192.0.0.0到223.255.255.255。换句话说,如果 IP 地址的第一段(十进制)在192到223之间,它就是一个 C 类地址。

那么转化为十进制(四段)的话,我们就能以第一段中的十进制数来区分 IP 地址到底是哪类地址了。

注意:

  • 十进制第一段大于 223 的属于 D 类和 E 类地址,这两类比较特殊也不常见,这里就不做详解介绍了。
  • 每一类都有一些排除地址,这些地址并不属于该类,他们是在一些特殊情况使用地址(后面会介绍)
  • 除了这样的方式来划分网络,我们还可以把每个网络划分为更小的网络块,称之为子网(后面会介绍)

全是 0 的主机 ID 代表网络本身,比如说 IP 地址为 130.100.0.0 指的是网络 ID 为130.100 的 B 类地址。

全是 1 的主机 ID 代表广播,是用于向该网络中的全部主机方法消息的。 IP 地址为 130.100.255.255 就是网络 ID 为 130.100 网络的广播地址(二进制 IP 地址中全是 1 ,转换为十进制就是 255 )

以十进制 127 开头的地址都是环回地址。目的地址是环回地址的消息,其实是由本地发送和接收的。主要是用于测试 TCP/IP 软件是否正常工作。我们用 ping 功能的时候,一般用的环回地址是 127.0.0.1

2)地址解析协议 ARP

简单的来说 ARP 的作用就是把 IP 地址映射为物理地址,而与之相反的 RARP(逆向 ARP)就是将物理地址映射为 IP 地址。

3)子网

前面提到了 IP 地址的分类,但是对于 A 类和 B 类地址来说,每个网络下的主机数量太多了,那么网络的传输会变得很低效,并且很不灵活。比如说 IP地址为 100.0.0.0 的 A 类地址,这个网络下的主机数量超过了 1600 万台。

所以子网掩码的出现就是为了解决这样的问题。

我们先回顾一下之前如何区分主机 IP 和网络 IP 的。

以 A 类地址 99.10.10.10 为例,前 8 位是网络 IP ,后 24 位是主机 IP 。(如下图)

子网掩码也是一个 32 为的二进制数,也可以用四个十进制数来分段,他的每一位对应着 IP 地址的相应位置,数值为 1 时代表的是非主机位,数值为 0 时代表是主机位。

由表格可以很清晰的看出,网络 IP 仍是由之前的分类来决定到底是多少位,主机 IP 则是由子网掩码值为 0 的位数来决定,剩下的则是子网 IP

5 传输层

传输层提供了两种到达目标网络的方式

  • 传输控制协议(TCP):提供了完善的错误控制和流量控制,能够确保数据正常传输,是一个面向连接的协议。
  • 用户数据报协议(UDP):只提供了基本的错误检测,是一个无连接的协议。

特点:

1)UDP:

  • 把数据打包
  • 数据大小有限制(64k)
  • 不建立连接
  • 速度快,但可靠性低

2)TCP:

  • 建立连接通道
  • 数据大小无限制
  • 速度慢,但是可靠性高

由于传输层涉及的东西比较多,比如端口,Socket等,都是我们做移动开发需要了解的,之后的文章中我们再具体做介绍,这里就不讲解了。

6 应用层

应用层做为 TCP/IP 协议的最高层级,对于我们移动开发来说,是接触最多的。

运行在TCP协议上的协议:
  • HTTP(Hypertext Transfer Protocol,超文本传输协议),主要用于普通浏览。
  • HTTPS(Hypertext Transfer Protocol over Secure Socket Layer, or HTTP over SSL,安全超文本传输协议),HTTP协议的安全版本。
  • FTP(File Transfer Protocol,文件传输协议),由名知义,用于文件传输。
  • POP3(Post Office Protocol, version 3,邮局协议),收邮件用。
  • SMTP(Simple Mail Transfer Protocol,简单邮件传输协议),用来发送电子邮件。
  • TELNET(Teletype over the Network,网络电传),通过一个终端(terminal)登陆到网络。
  • SSH(Secure Shell,用于替代安全性差的TELNET),用于加密安全登陆用。
运行在UDP协议上的协议:
  • BOOTP(Boot Protocol,启动协议),应用于无盘设备。
  • NTP(Network Time Protocol,网络时间协议),用于网络同步。
  • DHCP(Dynamic Host Configuration Protocol,动态主机配置协议),动态配置IP地址。
其他:
  • DNS(Domain Name Service,域名服务),用于完成地址查找,邮件转发等工作(运行在TCP和UDP协议上)。
  • ECHO(Echo Protocol,回绕协议),用于查错及测量应答时间(运行在TCP和UDP协议上)。
  • SNMP(Simple Network Management Protocol,简单网络管理协议),用于网络信息的收集和网络管理。
  • ARP(Address Resolution Protocol,地址解析协议),用于动态解析以太网硬件的地址。


目录
相关文章
|
17天前
|
域名解析 网络协议 安全
计算机网络TCP/IP四层模型
本文介绍了TCP/IP模型的四层结构及其与OSI模型的对比。网络接口层负责物理网络接口,处理MAC地址和帧传输;网络层管理IP地址和路由选择,确保数据包准确送达;传输层提供端到端通信,支持可靠(TCP)或不可靠(UDP)传输;应用层直接面向用户,提供如HTTP、FTP等服务。此外,还详细描述了数据封装与解封装过程,以及两模型在层次划分上的差异。
160 11
|
5月前
|
负载均衡 网络协议 网络性能优化
动态IP代理技术详解及网络性能优化
动态IP代理技术通过灵活更换IP地址,广泛应用于数据采集、网络安全测试等领域。本文详细解析其工作原理,涵盖HTTP、SOCKS代理及代理池的实现方法,并提供代码示例。同时探讨配置动态代理IP后如何通过智能调度、负载均衡、优化协议选择等方式提升网络性能,确保高效稳定的网络访问。
689 2
|
1月前
|
域名解析 API PHP
VM虚拟机全版本网盘+免费本地网络穿透端口映射实时同步动态家庭IP教程
本文介绍了如何通过网络穿透技术让公网直接访问家庭电脑,充分发挥本地硬件性能。相比第三方服务受限于转发带宽,此方法利用自家宽带实现更高效率。文章详细讲解了端口映射教程,包括不同网络环境(仅光猫、光猫+路由器)下的设置步骤,并提供实时同步动态IP的两种方案:自建服务器或使用三方API接口。最后附上VM虚拟机全版本下载链接,便于用户在穿透后将服务运行于虚拟环境中,提升安全性与适用性。
|
2月前
|
网络协议 物联网
VB6网络通信软件上位机开发,TCP网络通信,读写数据并处理,完整源码下载
本文介绍使用VB6开发网络通信上位机客户端程序,涵盖Winsock控件的引入与使用,包括连接服务端、发送数据(如通过`Winsock1.SendData`方法)及接收数据(利用`Winsock1_DataArrival`事件)。代码实现TCP网络通信,可读写并处理16进制数据,适用于自动化和工业控制领域。提供完整源码下载,适合学习VB6网络程序开发。 下载链接:[完整源码](http://xzios.cn:86/WJGL/DownLoadDetial?Id=20)
83 12
|
3月前
|
安全 网络安全 UED
为何长效代理静态IP是网络管理的关键要素
在信息化时代,静态长效IP代理对网络管理至关重要。它能提升网络服务质量,确保远程办公、视频会议等应用的稳定性和连续性;减少延迟和网络拥堵,加快数据传输;提高网络安全,便于设置访问权限,防止未授权访问。91HTTP高质量代理IP服务商助力高效信息获取。
71 23
|
4月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
135 11
|
3月前
|
网络协议 测试技术 Linux
Golang 实现轻量、快速的基于 Reactor 模式的非阻塞 TCP 网络库
gev 是一个基于 epoll 和 kqueue 实现的高性能事件循环库,适用于 Linux 和 macOS(Windows 暂不支持)。它支持多核多线程、动态扩容的 Ring Buffer 读写缓冲区、异步读写和 SO_REUSEPORT 端口重用。gev 使用少量 goroutine,监听连接并处理读写事件。性能测试显示其在不同配置下表现优异。安装命令:`go get -u github.com/Allenxuxu/gev`。
|
5月前
|
负载均衡 网络协议 算法
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
这网络层就像搭积木一样,上层协议都是基于下层协议搭出来的。不管是ping(用了ICMP协议)还是tcp本质上都是基于网络层IP协议的数据包,而到了物理层,都是二进制01串,都走网卡发出去了。 如果网络环境没发生变化,目的地又一样,那按道理说他们走的网络路径应该是一样的,什么情况下会不同呢? 我们就从路由这个话题聊起吧。
141 4
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
|
5月前
|
域名解析 网络协议 关系型数据库
【网络原理】——带你认识IP~(长文~实在不知道取啥标题了)
IP协议详解,IP协议管理地址(NAT机制),IP地址分类、组成、特殊IP地址,MAC地址,数据帧格式,DNS域名解析系统
|
5月前
|
网络协议
TCP报文格式全解析:网络小白变高手的必读指南
本文深入解析TCP报文格式,涵盖源端口、目的端口、序号、确认序号、首部长度、标志字段、窗口大小、检验和、紧急指针及选项字段。每个字段的作用和意义详尽说明,帮助理解TCP协议如何确保可靠的数据传输,是互联网通信的基石。通过学习这些内容,读者可以更好地掌握TCP的工作原理及其在网络中的应用。

热门文章

最新文章