light oj 1132 Summing up Powers

简介: 点击打开light oj 1132 思路: 构造矩阵+矩阵快速幂 分析: 1 题目给定n和k要求(1K + 2K + 3K+ ... + NK) % 232 2 具体的思路见下图    3 对于求组合数,我们可以利用公式C(n , ...

点击打开light oj 1132

思路: 构造矩阵+矩阵快速幂

分析:

1 题目给定n和k要求(1K + 2K + 3K+ ... + NK) % 232

2 具体的思路见下图

  

3 对于求组合数,我们可以利用公式C(n , k+1) = C(n , k)*(n-k)/(k+1) ,那么我们可以先打表求出50之内的所有的组合数


代码:

/************************************************
 * By: chenguolin                               * 
 * Date: 2013-08-29                             *
 * Address: http://blog.csdn.net/chenguolinblog *
 ************************************************/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

typedef long long int64;
const int64 MOD = (int64)1<<32;
const int N = 55;

int64 n , k;
int64 c[N][N];
struct Matrix{
    int64 mat[N][N]; 
    Matrix operator*(const Matrix &m)const{
        Matrix tmp;
        for(int i = 0 ; i < (k+2) ; i++){
            for(int j = 0 ; j < (k+2) ; j++){
                tmp.mat[i][j] = 0;
                for(int t = 0 ; t < (k+2) ; t++)
                    tmp.mat[i][j] += mat[i][t]*m.mat[t][j]%MOD;
                tmp.mat[i][j] %= MOD;
            }
        }
        return tmp;
    } 
};

int64 getVal(){
    c[0][0] = 1;
    for(int i = 1 ; i < N ; i++){
        c[i][0] = 1;
        for(int j = 1 ; j <= i ; j++)
           c[i][j] = c[i][j-1]*(i-j+1)/(j);
    }
}

void init(Matrix &m){
    memset(m.mat , 0 , sizeof(m.mat));
    for(int i = 0 ; i <= k ; i++){
        int x = 0;
        for(int j = i ; j <= k ; j++ , x++)
            m.mat[i][j] = c[k-i][x];
    }
    for(int i = 0 ; i <= k ; i++)
        m.mat[k+1][i] = m.mat[0][i];
    m.mat[k+1][k+1] = 1;
}

int64 Pow(Matrix &m){
    Matrix ans;
    memset(ans.mat , 0 , sizeof(ans));
    for(int i = 0 ; i <= k+1 ; i++)
        ans.mat[i][i] = 1;
    n--;
    while(n){
        if(n%2)    
            ans = ans*m;
        n /= 2;
        m = m*m;
    }
    int64 sum = 0;
    for(int i = 0 ; i < k+2 ; i++){
        sum += ans.mat[k+1][i]%MOD;
        sum %= MOD;
    }
    return sum;
}

int main(){
    int cas = 1;
    int Case;
    Matrix m;
    getVal();
    scanf("%d" , &Case);
    while(Case--){
        scanf("%llu%llu" , &n , &k);
        init(m);
        printf("Case %d: " , cas++); 
        printf("%llu\n" , Pow(m));
    }
    return 0;
}




目录
相关文章
light oj 1159 - Batman LCS
学过简单动态规划的人应该对最长公共子序列的问题很熟悉了,这道题只不过多加了一条字符串变成三条了,还记得,只要把状态变成三维的即可。
34 0
|
算法
light oj 1047 - Neighbor House 动态规划
动态规划,这个和刘汝佳算法竞赛入门经典P158的数字三角形有些相似,不过是求最小的值,而且有些限制,每次走到点和上次走的点不在同一列。
30 0
|
机器学习/深度学习
light oj 1005 - Rooks(组合数学)
组合数学解法 现在n行中选出m行,C(n,m),再在n列中选出m列随便放A(n,m),答案为C(n,m)*A(n,m)。
38 0
light oj 1231-1232 - 1233- Coin Change 背包
暂时到半懂不懂也没办法讲明白,就不误人子弟了,直接贴代码了。
35 0
UVa837 - Light and Transparencies(排序)
UVa837 - Light and Transparencies(排序)
51 0
hdu 1312 Red and Black(BFS)
hdu 1312 Red and Black(BFS)
144 0
|
机器学习/深度学习
HDOJ/HDU 1556 Color the ball(树状数组)
HDOJ/HDU 1556 Color the ball(树状数组)
102 0
HDOJ 1312 (POJ 1979) Red and Black
HDOJ 1312 (POJ 1979) Red and Black
113 0