Python网络爬虫4 ---- Linux下编写最简单的scrapy网络爬虫项目

简介:  首先我们需要先安装scrapy框架,没有安装的同学可以看ubuntu下安装scrapy网络爬虫框架        创建一个项目 Creating a project       1 进入到想要创建项目的目录: scrapy start...


 首先我们需要先安装scrapy框架,没有安装的同学可以看ubuntu下安装scrapy网络爬虫框架

     

 创建一个项目 Creating a project

      1 进入到想要创建项目的目录: scrapy startproject tutorial

         这样就可以创建了一个新的scrapy项目tutorial

      2 看一下项目的树形图

tutorial/
    scrapy.cfg
    tutorial/
        __init__.py
        items.py
        pipelines.py
        settings.py
        spiders/
            __init__.py
            ...


       3 简单的介绍一下每个文件的用处

        scrapy.cfg   是项目的配置文件

        tutorial/        是项目的入口

        items.py      是项目的数据字段文件

        pipelines.py 是项目的管道文件

        settings.py   是项目的配置文件

        spiders/       是项目中放网络蜘蛛的目录

 

 定义我们要的数据字段 Defining our Item

     1 定义自己所需要的数据字段是从我们爬取下来的数据中提取的

     2 定义字段在items.py中定义Item类来实现的

     3 我们在items.py中定义出三个字段,titile和link以及desc

from scrapy.item import Item, Field

class DmozItem(Item):
    title = Field()
    link = Field()
    desc = Field()


创建第一个网络蜘蛛 Our first Spider

     1 网络蜘蛛是指从用户定义好的一组域中爬取数据

     2 要创建一个网络蜘蛛,我们必须在spiders/ 目录下创建一个文件

     3 我们创建第一个网络蜘蛛,保存为dmoz_spider.py

from scrapy.spider import BaseSpider

class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        filename = response.url.split("/")[-2]
        open(filename, 'wb').write(response.body)


       name              是网络蜘蛛的名称,名称要唯一
       start_urls        是网络蜘蛛开始爬取的第一个url

       parse()函数    是网络蜘蛛爬取后response的对象,负责解析响应数据


运行项目 Crawling

       1 回到这个项目的最顶层运行:scrapy crawl dmoz

      2 有如下结果

2014-01-23 18:13:07-0400 [scrapy] INFO: Scrapy started (bot: tutorial)
2014-01-23 18:13:07-0400 [scrapy] INFO: Optional features available: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Overridden settings: {}
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled extensions: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled downloader middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled spider middlewares: ...
2014-01-23 18:13:07-0400 [scrapy] INFO: Enabled item pipelines: ...
2014-01-23 18:13:07-0400 [dmoz] INFO: Spider opened
2014-01-23 18:13:08-0400 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)
2014-01-23 18:13:09-0400 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
2014-01-23 18:13:09-0400 [dmoz] INFO: Closing spider (finished)

      3 运行完这个项目之后,在这个项目tutorial产生两个文件Books和Resources


项目是怎样工作的? What just happened under the hood?

      scrapy对定义在spider里面的每一个url产生一个http的request请求,然后通过parse()函数进行回滚处理。


提取数据字段 Extracting Items

      1 有几种方法从web页面中提取数据,比如XPath和CSS

      2 几个XPath例子的解释

         /html/head/title: 选择所有head内部的title内容

         /html/head/title/text(): 选择所有的位于title内部的text内容

         //td: 选择所有的<td>元素

         //div[@class="mine"]: 选择所有的class名叫mine的div元素

      3 选择器的四个基本方法

         xpath(): 返回一个选择器列表,每一个代表xpath选择的

         css(): 返回一个选择器列表,每一个代表css选择的

         extract(): 返回一个unicode字符串

         re(): 返回一个unicode字符串从正则表达式中选出的

      4 为了说明使用selectors,我们使用scrapy shell

         回到项目的最顶层: scrapy shell "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/"

      5 出现如下

[ ... Scrapy log here ... ]

2014-01-23 17:11:42-0400 [default] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)
[s] Available Scrapy objects:
[s]   crawler    <scrapy.crawler.Crawler object at 0x3636b50>
[s]   item       {}
[s]   request    <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s]   response   <200 http://www.dmoz.org/Computers/Programming/Languages/Python/Books/>
[s]   sel        <Selector xpath=None data=u'<html>\r\n<head>\r\n<meta http-equiv="Conten'>
[s]   settings   <CrawlerSettings module=None>
[s]   spider     <Spider 'default' at 0x3cebf50>
[s] Useful shortcuts:
[s]   shelp()           Shell help (print this help)
[s]   fetch(req_or_url) Fetch request (or URL) and update local objects
[s]   view(response)    View response in a browser

In [1]:


       6 我们可以按照以下的方法试试

In [1]: sel.xpath('//title')
Out[1]: [<Selector xpath='//title' data=u'<title>Open Directory - Computers: Progr'>]

In [2]: sel.xpath('//title').extract()
Out[2]: [u'<title>Open Directory - Computers: Programming: Languages: Python: Books</title>']

In [3]: sel.xpath('//title/text()')
Out[3]: [<Selector xpath='//title/text()' data=u'Open Directory - Computers: Programming:'>]

In [4]: sel.xpath('//title/text()').extract()
Out[4]: [u'Open Directory - Computers: Programming: Languages: Python: Books']

In [5]: sel.xpath('//title/text()').re('(\w+):')
Out[5]: [u'Computers', u'Programming', u'Languages', u'Python']


      7 通过上面的分析,我们可以把我们的网络蜘蛛spider改成以下代码

from scrapy.spider import BaseSpider
from scrapy.selector import Selector

class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        sel = Selector(response)
        sites = sel.xpath('//ul/li')
        for site in sites:
            title = site.xpath('a/text()').extract()
            link = site.xpath('a/@href').extract()
            desc = site.xpath('text()').extract()
            print title, link, desc


        8 最后使用上我们自己定义的Item,Item就像Python里面的字典一样

from scrapy.spider import BaseSpider
from scrapy.selector import Selector

from tutorial.items import DmozItem

class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        sel = Selector(response)
        sites = sel.xpath('//ul/li')
        items = []
        for site in sites:
            item = DmozItem()
            item['title'] = site.xpath('a/text()').extract()
            item['link'] = site.xpath('a/@href').extract()
            item['desc'] = site.xpath('text()').extract()
            items.append(item)
        return items


        9 最简单的存储爬取数据方法是使用Feed exports,使用如下命令

         scrapy crawl dmoz -o items.json -t json 

         这个命令将生成items.json文件,包含所有爬取的字段



目录
相关文章
|
1月前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
45 5
|
11天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
143 55
|
1月前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
1月前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
77 2
|
21天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
112 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
26天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
40 6
|
29天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
52 8
|
1月前
|
数据采集 中间件 API
在Scrapy爬虫中应用Crawlera进行反爬虫策略
在Scrapy爬虫中应用Crawlera进行反爬虫策略
|
7月前
|
运维 网络协议 安全
【Shell 命令集合 网络通讯 】Linux 网络抓包工具 tcpdump命令 使用指南
【Shell 命令集合 网络通讯 】Linux 网络抓包工具 tcpdump命令 使用指南
230 0
|
7月前
|
网络协议 Linux 网络安全
curl(http命令行工具):Linux下最强大的网络数据传输工具
curl(http命令行工具):Linux下最强大的网络数据传输工具
219 0