Facebook利用AI算法“纠偏”360度照片

简介:

据外媒VentureBeat报道,Facebook今日向外表示,为了给用户提供更好的360度视频观看体验,其将利用AI算法来对这些内容进行调整,避免因为图片倾斜破坏呈现效果。

据悉,在今日举办的@Scale大会上,Facebook设立了一个系统,通过深度神经网络来尝试纠正上传后的照片中常见的错误。例如,拍摄360度照片的人不会将相机完美的和地平线保持水平位置,拍出来的照片可能存在倾斜等问题。而如果利用VR设备观看这些图像和视频,则会有难以阅读或打破沉浸感等问题。

据VentureBeat 的 Blair Hanley Frank 表示,Facebook设立的这一系统,在拍摄时可输出一对数值,来纠正照片的水平线和视野中的地平线的倾斜度和,从而使其保持一致。这样一来,用户在环视场景时就不会看到弯曲的图像。

据介绍,Facebook的新系统运用了AlexNet图像识别系统,AlexNet 是 2012 年创建的卷积神经网络,已被用于解决其他很多问题,如确认图像内容等等。现在这一系统还未投入生产,不过公司的研究显示已在预期之中。比如确认图像的内容等。

事实上,雷锋网了解到,自从Facebook去年在News Feed中增加360度照片后,这种图片的数量越来越多。由于可以通过移动设备拍摄和分享这样的图片,使得它的流行度进一步加强。与此同时,借助Facebook的Gear VR应用寻找这些内容的难度也在有所降低。

除了自动修正倾斜度这一问题,Facebook还不得不面对360度照片的大规模上传的问题。虽然这对于超快速网络和设备不是一个大问题,但是其对基于蜂窝网络的移动设备来说,压力不小。

就这一问题,Facebook采取将照片转换成多维数据集的方式,然后将这些数据集存储在不同的分辨率上。即当用户在News Feeds里刷到一张全景照片的时候,Facebook的AI算法就会计算当前窗口渲染时需要哪种分辨率、以及用哪些小图像来拼贴成大图。如果当前需要的分辨率不可用,程序就会暂时渲染一个低分辨率的版本,同时等待网络把高分辨率的内容传过来。当用户进入全景照片移动手机和在屏幕上缩放观看的时候,程序会不停地做这样的全套计算。这样,原来的用户体验上不会有什么可感知的变化,却实现了千万甚至上亿像素的高分辨率全景图像显示。



本文作者:李秀琴
本文转自雷锋网禁止二次转载, 原文链接
目录
相关文章
|
28天前
|
传感器 人工智能 监控
智慧工地 AI 算法方案
智慧工地AI算法方案通过集成多种AI算法,实现对工地现场的全方位安全监控、精准质量检测和智能进度管理。该方案涵盖平台层、展现层与应用层、基础层,利用AI技术提升工地管理的效率和安全性,减少人工巡检成本,提高施工质量和进度管理的准确性。方案具备算法精准高效、系统集成度高、可扩展性强和成本效益显著等优势,适用于人员安全管理、施工质量监控和施工进度管理等多个场景。
|
1月前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
智慧电厂AI算法方案
|
13天前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
31 6
【AI系统】QNNPack 算法
|
13天前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
35 5
【AI系统】Im2Col 算法
|
13天前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
28 2
【AI系统】Winograd 算法
|
1天前
|
人工智能 算法
AI+脱口秀,笑点能靠算法创造吗
脱口秀是一种通过幽默诙谐的语言、夸张的表情与动作引发观众笑声的表演艺术。每位演员独具风格,内容涵盖个人情感、家庭琐事及社会热点。尽管我尝试用AI生成脱口秀段子,但AI缺乏真实的情感共鸣和即兴创作能力,生成的内容显得不够自然生动,难以触及人心深处的笑点。例如,AI生成的段子虽然流畅,却少了那份不期而遇的惊喜和激情,无法真正打动观众。 简介:脱口秀是通过幽默语言和夸张表演引发笑声的艺术形式,AI生成的段子虽流畅但缺乏情感共鸣和即兴创作力,难以达到真人表演的效果。
|
29天前
|
机器学习/深度学习 传感器 人工智能
智慧无人机AI算法方案
智慧无人机AI算法方案通过集成先进的AI技术和多传感器融合,实现了无人机的自主飞行、智能避障、高效数据处理及多机协同作业,显著提升了无人机在复杂环境下的作业能力和安全性。该方案广泛应用于航拍测绘、巡检监测、应急救援和物流配送等领域,能够有效降低人工成本,提高任务执行效率和数据处理速度。
智慧无人机AI算法方案
|
17天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
42 3
|
17天前
|
机器学习/深度学习 人工智能 算法
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
34 1
|
1月前
|
传感器 人工智能 监控
智慧化工厂AI算法方案
智慧化工厂AI算法方案针对化工行业生产过程中的安全风险、效率瓶颈、环保压力和数据管理不足等问题,通过深度学习、大数据分析等技术,实现生产过程的实时监控与优化、设备故障预测与维护、安全预警与应急响应、环保监测与治理优化,全面提升工厂的智能化水平和管理效能。
118 0
智慧化工厂AI算法方案
下一篇
DataWorks