光纤通道协议网络拓扑结构简介

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 光纤通道网络中有三种不同的拓扑结构:点对点拓扑结构,仲裁环路拓扑结构,交换式光纤网络拓扑结构: http://download.csdn.net/detail/changyanmanman/5305062 问:   大多数磁盘阵列都是通过两个控制器后端的端口,组成1/2/4条FC-AL环,来连接所有磁盘。

光纤通道网络中有三种不同的拓扑结构:点对点拓扑结构,仲裁环路拓扑结构,交换式光纤网络拓扑结构:

http://download.csdn.net/detail/changyanmanman/5305062

问:

  大多数磁盘阵列都是通过两个控制器后端的端口,组成1/2/4条FC-AL环,来连接所有磁盘。

  FC-AL仲裁环的协议规定,同一时刻只有两个设备能传送数据,也就是说,在一条FC-AL环里面,控制器的一个后端端口充当了发起者的角色,环上的一个硬盘充当了目的地的角色,在一个时刻里,后端端口发出数据读写指令,只有一个硬盘能响应这个指令并传输数据。

  那是否就意味着,一条FC-AL环的总体性能,取决于一个硬盘的读写性能?15K转速的硬盘,持续读写带宽不到70MB/S,IOPS不到400。那像IBM DS4800、EMC CX-80之类的,总共4条环,后端的性能岂不是只有280MB/S、1600 IOPS?除了以阵列里CACHE来提高速度,我不知道有没有别的办法,或者,磁盘阵列内部采用的不是工业标准的FC-AL?

答:

  这个问题非常好,而且也非常经典。要解释这个问题,需要明白三点:

  1.FCAL的传输通道的确同一时刻只允许两点间独占通道带宽来传输数据。

  2.控制器在有足够IO请求的情况下绝对不会让通道闲着,会充分利用带宽。

  3.磁盘的外部传输率和内部传输率。FCAL环路上存在多个设备的时候,由于控制器的轮询策略充分利用带宽,整个系统在外体现为一个永远都在读写数据状态而不是寻道状态的大虚拟设备(《大话存储》第53页也有描述),一旦某个设备需要寻道,那么就让其他设备来传输数据来弥补所浪费的时隙,所以整体系统可以发挥出一个单一设备的内部传输率。

  下面是详细总结:

  当FCAL环路上存在多个设备的时候,控制器向谋设备发起IO之后,该设备需要一定的寻道时间,而此期间内AL环出于被释放的状态,此时控制器依然可以向另外的设备发起IO,也就类似于先把该做的命令全部下发,待某个设备寻道完成请求将数据返回给控制器的时候,往往是多个设备都出于积攒状态,也就是他们都干完活了,准备交差了,而此时只能排队一个一个来,大家都鼓着劲呢。明白了这一点,我们就往下看。

  关于IOPS数值的矛盾:

  IOPS与吞吐量是一对矛盾关系。在关注IOPS的环境下,IO SIZE往往比较小,因为只要较小的SIZE才不至于充满带宽达到瓶颈,所以,要达到较高的IOPS,IO SIZE需要比较小。而这种情况下控制器将IO请求发送给设备之后,多个设备出于积攒状态,他们会仲裁从而一个一个的分别得到传输数据的机会,由于IO SIZE很小,所以每次传输数据很快就结束,这样,一个IO就飞快的完成了,而上一个设备的IO完成之后,下一个设备接着也会很快完成,因为他已经出于积攒态,待返回的数据早已在cache中准备发送。

这样的话,这个整体系统对外就表现为一个永远在完成IO而不需要寻道的虚拟设备。而如果AL环上除了控制器之外只有一个设备,那么环路就必须等待它寻道,因为寻道的时隙内,AL环上已经没有其他设备可工作了。

然而,AL环的这种弥补寻道时隙的效果也不是设备越多就越好,不同的设计和产品都有自己不同的最佳设备数量,目前的经验值为64个,也就是环路总容量的一半,超过这个值,性能不会再有提高,甚至有所下降。

我们可以推论出另外一个结论,也就是,慢速设备,比如寻道时间长的设备,越是慢速设备,组成AL环路之后其带来的整体提升越大,越是快速设备,高规格的设备,组成AL环路之后,提升的性能越有限。这就是AL环或者其他共享总线/环方式弥补设备自身处理产生的时隙的效果。

  关于吞吐量/带宽值的矛盾:

  经过上面的描述,我们已经对共享总线/环传输方式的底层机制以及其效用有了一个很好的理解了。在重视和追求高吞吐量,也就是充分利用带宽的环境下,IO SIZE往往非常大,以至于在较低的IOPS值下就已经可以吃满通道带宽了。

往往这种情况下,上层所发出的IO都是连续大块的IO,以至于AL环之上的设备寻道时间可以大大降低,这就使得设备更快的出于积攒态,准备向外发送数据。我们知道磁盘外部传输率由于磁盘内部不断换道被打断,致使其数值较内部传输率降低了大约20倍。而AL环的效用就是弥补寻道所浪费的时隙,所以整体系统的外部吞吐量,就被提升了上来,从而解决了这个矛盾。

相关文章


相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
5月前
|
数据采集 算法 数据挖掘
模块化控制协议(MCP)在网络中增强智能体执行效率的研究
随着Web3技术的迅速发展,去中心化应用和智能体在各种领域的应用逐渐增多。MCP(Modularized Control Protocol,模块化控制协议)作为一种增强智能体执行能力的关键技术,为Web3场景中的智能体提供了更强的灵活性和可扩展性。本文将探讨如何利用MCP技术提升智能体在Web3场景中的执行能力,并通过实例代码展示其实现路径。
438 22
|
2月前
|
监控 负载均衡 安全
WebSocket网络编程深度实践:从协议原理到生产级应用
蒋星熠Jaxonic,技术宇宙中的星际旅人,以代码为舟、算法为帆,探索实时通信的无限可能。本文深入解析WebSocket协议原理、工程实践与架构设计,涵盖握手机制、心跳保活、集群部署、安全防护等核心内容,结合代码示例与架构图,助你构建稳定高效的实时应用,在二进制星河中谱写极客诗篇。
WebSocket网络编程深度实践:从协议原理到生产级应用
|
3月前
|
运维 架构师 安全
二层协议透明传输:让跨域二层协议“无感穿越”多服务商网络
简介:本文详解二层协议透明传输技术,适用于企业网工、运营商及架构师,解决LLDP/LACP/BPDU跨运营商传输难题,实现端到端协议透传,提升网络韧性与运维效率。
|
10月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
509 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
6月前
|
机器学习/深度学习 人工智能 运维
“网太乱,AI来管”——聊聊AI在网络拓扑优化上的骚操作
“网太乱,AI来管”——聊聊AI在网络拓扑优化上的骚操作
469 15
|
7月前
|
安全 网络协议 Linux
Linux网络应用层协议展示:HTTP与HTTPS
此外,必须注意,从HTTP迁移到HTTPS是一项重要且必要的任务,因为这不仅关乎用户信息的安全,也有利于你的网站评级和粉丝的信心。在网络世界中,信息的安全就是一切,选择HTTPS,让您的网站更加安全,使您的用户满意,也使您感到满意。
209 18
|
10月前
|
机器学习/深度学习 自动驾驶 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
442 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
7月前
|
数据中心
网络拓扑类型分类
本内容介绍了六种常见的网络拓扑结构:总线型、星型、环型、树型、网状型和混合型。每种结构均包含定义、优点、缺点及应用场景的详细说明。例如,总线型成本低但可靠性差;星型易于管理但中心节点负担重;网状型可靠性高但成本昂贵;混合型则结合多种结构以优化性能,但设计复杂。这些拓扑适用于不同规模和需求的网络环境,如家庭网络、企业网络及数据中心等。
1675 13
|
8月前
|
安全 网络安全 定位技术
网络通讯技术:HTTP POST协议用于发送本地压缩数据到服务器的方案。
总的来说,无论你是一名网络开发者,还是普通的IT工作人员,理解并掌握POST方法的运用是非常有价值的。它就像一艘快速,稳定,安全的大船,始终为我们在网络海洋中的冒险提供了可靠的支持。
253 22
|
8月前
|
网络协议 数据安全/隐私保护 网络架构

热门文章

最新文章