Hibernate学习之------>Hibernate性能优化的几点建议

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 1、针对oracle数据库而言,Fetch Size 是设定JDBC的Statement读取数据的时候每次从数据库中取出的记录条数,一般设置为30、50、100。
1、针对oracle数据库而言,Fetch Size 是设定JDBC的Statement读取数据的时候每次从数据库中取出的记录条数,一般设置为30、50、100。Oracle数据库的JDBC驱动默认的Fetch Size=15,设置Fetch Size设置为:30、50,性能会有明显提升,如果继续增大,超出100,性能提升不明显,反而会消耗内存。

  即在hibernate配制文件中进行配制:

1 <property name="hibernateProperties">
2 <props>
3 <prop key="hibernate.dialect">org.hibernate.dialect.Oracle9Dialect</prop>
4 <prop key="hibernate.show_sql">false</prop>
5 <!-- Create/update the database tables automatically when the JVM starts up
6 <prop key="hibernate.hbm2ddl.auto">update</prop> -->
7 <!-- Turn batching off for better error messages under PostgreSQL 
8 <prop key="hibernate.jdbc.batch_size">100</prop> -->
9 <prop key="hibernate.jdbc.batch_size">50</prop>
10 </props>
11 </property>Fetch Size设的越大,读数据库的次数越少,速度越快;Fetch Size越小,读数据库的次数越多,速度越慢。

  2、如果是超大的系统,建议生成htm文件。加快页面提升速度。

  3、不要把所有的责任推在hibernate上,对代码进行重构,减少对数据库的操作,尽量避免在数据库查询时使用in操作,以及避免递归查询操作,代码质量、系统设计的合理性决定系统性能的高低。

  4、 对大数据量查询时,慎用list()或者iterator()返回查询结果, 

  (1). 使用List()返回结果时,Hibernate会所有查询结果初始化为持久化对象,结果集较大时,会占用很多的处理时间。 

  (2). 而使用iterator()返回结果时,在每次调用iterator.next()返回对象并使用对象时,Hibernate才调用查询将对应的对象初始化,对于大数据量时,每调用一次查询都会花费较多的时间。当结果集较大,但是含有较大量相同的数据,或者结果集不是全部都会使用时,使用iterator()才有优势。

  5、在一对多、多对一的关系中,使用延迟加载机制,会使不少的对象在使用时方会初始化,这样可使得节省内存空间以及减少数据库的负荷,而且若PO中的集合没有被使用时,就可减少互数据库的交互从而减少处理时间。 

  6、对含有关联的PO(持久化对象)时,若default-cascade="all"或者 “save-update”,新增PO时,请注意对PO中的集合的赋值操作,因为有可能使得多执行一次update操作。 

  7、 对于大数据量新增、修改、删除操作或者是对大数据量的查询,与数据库的交互次数是决定处理时间的最重要因素,减少交互的次数是提升效率的最好途径,所以在开发过程中,请将show_sql设置为true,深入了解Hibernate的处理过程,尝试不同的方式,可以使得效率提升。尽可能对每个页面的显示,对数据库的操作减少到100----150条以内。越少越好。

  以上是在进行struts+hibernate+spring进行项目开发中,对hibernate性能优化的几点心得。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
缓存 Oracle Java
hibernate学习之三(悲观锁与乐观锁)
hibernate学习之三(悲观锁与乐观锁)
|
Java 数据库连接 数据库
Hibernate学习之Hibernate注解总结
Hibernate学习之Hibernate注解总结http://www.bieryun.com/3269.html 一、类级别的注解 @Entity name:表的名字(可选)一般表名和类名相同 必须指定主键属性@Id @Table name:映射表的名称(可选) catalog:目录(可选)默认为空 schema:模式(可选)默认为空 与@Entity注解配合使用,只能表示在实体类class定义处,表示实体类对应数据库表的信息 @Embeddable 表示一个非Entity类,不是一个实体类,可以嵌入到实体类中作为一个属性存在。
1664 0
|
Java 数据库连接 数据库
Hibernate学习之Hibernate注解总结
Hibernate学习之Hibernate注解总结 一、类级别的注解 @Entity name:表的名字(可选)一般表名和类名相同 必须指定主键属性@Id @Table name:映射表的名称(可选) catalog:目录(可选)默认为空 schema:模式(可选)默认为空 与@Entity注解配合使用,只能表示在实体类class定义处,表示实体类对应数据库表的信息 @Embeddable 表示一个非Entity类,不是一个实体类,可以嵌入到实体类中作为一个属性存在。
1365 0
|
Java 数据库连接 数据库
|
SQL Java 数据库连接