大数据治理系统框架Apache Atlas实践

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据元数据和数据管理框架Apache Atlas实践今天技术小伙伴占卫同学分享了Apache Atlas元数据管理实践,被atlas的强大的血缘关系管理能力震撼,以下为本次分享内容:•Apache Atlas简介•Apache Atlas架构...
大数据元数据和数据管理框架
Apache Atlas实践

今天技术小伙伴占卫同学分享了Apache Atlas元数据管理实践,被atlas的强大的血缘关系管理能力震撼,以下为本次分享内容:
•Apache Atlas简介
•Apache Atlas架构
•Titan图数据库介绍
•ApachAtlas配置
•Apache Atlas案例
•总结

Apache Atlas简介
•面对海量且持续增加的各式各样的数据对象,你是否有信心知道哪些数据从哪里来以及它如何随时间而变化?采用Hadoop必须考虑数据管理的实际情况,元数据与数据治理成为企业级数据湖的重要部分
•为寻求数据治理的开源解决方案,Hortonworks公司联合其他厂商与用户于2015年发起数据治理倡议,包括数据分类、集中策略引擎、数据血缘、安全和生命周期管理等方面。Apache Atlas 项目就是这个倡议的结果,社区伙伴持续的为该项目提供新的功能和特性。该项目用于管理共享元数据、数据分级、审计、安全性以及数据保护等方面,努力与Apache Ranger整合,用于数据权限控制策略。


Atlas主要功能
•数据分类

        定义、注释和自动捕获数据集和底层之间的关系元素包括源、目标和派生过程

•安全审计

        数据访问的日志审计

•搜索和血缘关系

       元数据信息及数据之间的血缘

•安全与策略引擎
       结合ApacheRanger来设置数据的访问权限


Atlas架构



Atlas Core
Type System Atlas 允许用户为他们想要管理的元数据对象定义一个模型。该模型由称为 类型 的定义组成 类型 (类)的 实例被称为 实体 表示被管理的实际元数据对象。类型系统是一个组件,允许用户定义和管理类型和实体。由 Atlas 管理的所有元数据对象(例如 Hive 表)都使用类型进行建模,并表示为 实体 ( 类对象,一条数据 )
Ingest / Export Ingest 组件允许将元数据添加到 Atlas 。类似地, Export 组件暴露由 Atlas 检测到的元数据更改,以作为事件引发,消费者可以使用这些更改事件来实时响应元数据更改。
Graph Engine  :在内部, Atlas 通过使用图形模型管理元数据对象。以实现元数据对象之间的巨大灵活性和丰富的关系。图形引擎是负责在类型系统的类型和实体之间进行转换的组件,以及基础图形模型。除了管理图形对象之外,图形引擎还为元数据对象创建适当的索引,以便有效地搜索它们

 
如何使用Atlas管理

   用户可以使用两种方法管理 Atlas中的元数据

•API:Atlas 的所有功能通过REST API 提供给最终用户,允许创建,更新和删除类型和实体。它也是查询和发现通过Atlas 管理的类型和实体的主要方法。

    https://cwiki.apache.org/confluence/display/ATLAS/Atlas+REST+API

Messaging :除了 API 之外,用户还可以选择使用基于 Kafka 的消息接口与 Atlas 集成。这对于将元数据对象传输到 Atlas 以及从 Atlas 使用可以构建应用程序的元数据更改事件都非常有用。如果希望使用与 Atlas 更松散耦合的集成,这可以允许更好的可扩展性,可靠性等,消息传递接口是特别有用的。 Atlas 使用 Apache Kafka 作为通知服务器用于钩子和元数据通知事件的下游消费者之间的通信。事件由钩子和 Atlas 写到不同的 Kafka 主题。


Titan介绍

Titan :目前, Atlas 使用 Titan 图数据库来存储元数据对象。 Titan 使用两个存储:默认情况下元数据存储配置为 HBase ,索引存储配置为 Solr 。也可以通过构建相应的配置文件将元数据存储作为 BerkeleyDB Index 存储使用为 ElasticSearch 。元数据存储用于存储元数据对象本身,并且索引存储用于存储元数据属性的索引,其允许高效搜索
目前 基于 Java 使用最广泛的有两个开源框架

  (1) neo4j

  社区版 免费

  企业版 收费

    (2) Titan

  全开

 Titan是一个分布式的图数据库,支持横向扩展,可容纳数千亿个顶点和边。 Titan支持事务,并且可以支撑上千并发用户和 计算复杂图形遍历。




安装

安装前需要确定,你运行titanJava环境为1.8+ *

1) 将安装包拷贝到安装位置后解压缩

unzip titan-1.0.0-hadoop2.zip

2) 删除并添加相关jar

官方提供的hadoop2的安装包有一些问题,如果想要顺利的使用titan,必须删除相关的jar包,并添加一些缺失的jar包:

a. 删除异常jar

hadoop-core-1.2.1.jar

b. 添加所需要的jar,这些jar包可以通过maven进行下载

titan-hadoop-1.0.0.jar

titan-hadoop-core-1.0.0.jar


启动

titan 安装后,使用默认配置启动 titan 服务。
默认情况下, titan 会启动三个服务:
Cassandra 作为后端数据库存储图数据
Elasticsearch 作为索引,提高图的检索效率
Gremlin-Server 图数据库引擎,支持 gremlin 数据查询 语法



测试

./bin/gremlin.sh

:remote connect tinkerpop.serverconf/remote.yaml


//初始化

graph=TitanFactory.open('conf/titan-cassandra-es.properties')

GraphOfTheGodsFactory.load(graph)

g=graph.traversal()


//获取saturn

saturn=g.V().has('name', 'saturn').next()

g.V(saturn).valueMap()


//查看saturn孙子

g.V(saturn).in('father').in('father').values('name')



//查看hercules父母

hercules = g.V().has('name', 'hercules').next()

g.V(hercules).out('father', 'mother').values('name')


Atlas配置

1Atlas安装后默认hbasesolr存储,如果想修改存储介质,需要修改

/usr/hdp/2.6.0.3-8/atlas/conf/atlas-application.properties





2Atlas安装完之后会在hive-site.xml文件中插入,是一个钩子函数



Hive 在使用 hive hook 的hive 命令执行上支持侦听器。 这用于在 Atlas 中使用org.apache.atlas.hive.model.HiveDataModelGenerator 中定义的模型添加/更新/删除实体。 hive hook将请求提交给线程池执行器,以避免阻塞命令执行。 线程将实体作为消息提交给通知服务器,并且服务器读取这些消息并注册实体。


3,如果Atlas中没有元数据,需要手动执行

/usr/hdp/2.6.0.3-8/atlas/hook-bin/import-hive.sh


4Atlas高可用

要在 Atlas 中设置高可用性,必须在 atlas-application.properties文件中定义一些配置选项。

•高可用性是Atlas 的可选功能。因此,必须通过将配置选项atlas.server.ha.enabled设置为true 来启用。
•接下来,定义标识符列表,为您为 Atlas Web Service 实例选择的每个物理机器分配一个标识符。这些标识符可以是简单的字符串,如id1,id2等。它们应该是唯一的,不应包含逗号。
•将这些标识符的逗号分隔列表定义为选项 atlas.server.ids的值。
•对于每个物理机,请列出IP地址/主机名和端口作为配置 atlas.server.address.id的值,其中 id指的是此物理机的标识符字符串。

•例如,如果您选择了 2台主机名为 http://host1.company.com和 http://host2.company.com的计算机,则可以如下定义配置选项:
•  atlas.server.ids=id1,id2
• atlas.server.address.id1=host1.company.com:21000
• atlas.server.address.id2=host2.company.com:21000
•定义使用的 Zookeeper为 Atlas提供高可用性功能

atlas.server.ha.zookeeper.connect=zk1.company.com:2181,zk2.company.com:2181,zk3.comp

•要验证高可用性是否正常工作,请在安装了 Atlas Web Service 的每个实例上运行以下脚本。

   $ATLAS_HOME/bin/atlas_admin.py -status


以下hive 操作由 hive hook 当前捕获

create database

create table/view, create table as select

load, import, export

DMLs (insert)

alter database

alter table (skewed table information, stored as, protection is notsupported)

alter view


案例


REST API

http://192.168.200.13:21000/api/atlas/lineage/hive/table/stg.stg_device_info_d@test/inputs/graph   

http://192.168.200.13:21000/api/atlas/lineage/hive/table/stg.stg_device_info_d@test/outputs/graph

注意:已经删除的表,RESTAPI不能查询,但是图形化工具可以查询


总结

ApacheAtlas可监控数据的流向

ApacheRanger统一授权管理


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
1月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
1月前
|
存储 数据可视化 数据挖掘
基于大数据的电影可视化、推荐与票房预测系统
本系统基于Python与Flask框架,结合Echarts等技术,实现电影数据的采集、存储与可视化展示。通过对票房、评分、评论等数据的分析,生成图表与词云,帮助用户直观理解电影市场趋势,支持决策制定与观影推荐,提升电影行业的数据分析能力与用户体验。
|
3月前
|
机器学习/深度学习 存储 分布式计算
ODPS驱动电商仓储革命:动态需求预测系统的落地实践
本方案基于ODPS构建“预测-仿真-决策”闭环系统,解决传统仓储中滞销积压与爆款缺货问题。通过动态特征工程、时空融合模型与库存仿真引擎,实现库存周转天数下降42%,缺货率下降65%,年损减少5000万以上,显著提升运营效率与GMV。
237 1
|
8天前
|
SQL 人工智能 数据挖掘
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
Apache Doris 4.0 原生集成 LLM 函数,将大语言模型能力深度融入 SQL 引擎,实现文本处理智能化与数据分析一体化。通过十大函数,支持智能客服、内容分析、金融风控等场景,提升实时决策效率。采用资源池化管理,保障数据一致性,降低传输开销,毫秒级完成 AI 分析。结合缓存复用、并行执行与权限控制,兼顾性能、成本与安全,推动数据库向 AI 原生演进。
47 0
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
|
19天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
24天前
|
数据采集 数据可视化 安全
基于python大数据的天气可视化分析预测系统
本研究探讨基于Python的天气预报数据可视化系统,旨在提升天气数据获取、分析与展示的效率与准确性。通过网络爬虫技术快速抓取实时天气数据,并运用数据可视化技术直观呈现天气变化趋势,为公众出行、农业生产及灾害预警提供科学支持,具有重要的现实意义与应用价值。
|
2月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
160 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
1月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
1月前
|
数据采集 数据可视化 数据挖掘
基于python大数据的nba球员可视化分析系统
本课题围绕NBA球员数据分析与可视化展开,探讨如何利用大数据与可视化技术提升篮球运动的表现评估与决策支持能力。研究涵盖数据采集、处理与可视化呈现,结合SQLite、Flask、Echarts等技术构建分析系统,助力球队训练、战术制定及球迷观赛体验提升。
|
2月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。

热门文章

最新文章

推荐镜像

更多