练习--LINUX进程间通信之消息队列MSG

简介: https://www.ibm.com/developerworks/cn/linux/l-ipc/part3/ 继续坚持,或许不能深刻理解,但至少要保证有印象。 ~~~~~~~~~~~~~~ 消息队列(也叫做报文队列)能够克服早期unix通信机制的一些缺点。

https://www.ibm.com/developerworks/cn/linux/l-ipc/part3/

继续坚持,或许不能深刻理解,但至少要保证有印象。

~~~~~~~~~~~~~~

消息队列(也叫做报文队列)能够克服早期unix通信机制的一些缺点。作为早期unix通信机制之一的信号能够传送的信息量有限,后来虽然POSIX 1003.1b在信号的实时性方面作了拓广,使得信号在传递信息量方面有了相当程度的改进,但是信号这种通信方式更像"即时"的通信方式,它要求接受信号的进程在某个时间范围内对信号做出反应,因此该信号最多在接受信号进程的生命周期内才有意义,信号所传递的信息是接近于随进程持续的概念(process-persistent),见 附录 1;管道及有名管道及有名管道则是典型的随进程持续IPC,并且,只能传送无格式的字节流无疑会给应用程序开发带来不便,另外,它的缓冲区大小也受到限制。

消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。对消息队列有写权限的进程可以向中按照一定的规则添加新消息;对消息队列有读权限的进程则可以从消息队列中读走消息。消息队列是随内核持续的(参见 附录 1)。

目前主要有两种类型的消息队列:POSIX消息队列以及系统V消息队列,系统V消息队列目前被大量使用。考虑到程序的可移植性,新开发的应用程序应尽量使用POSIX消息队列。

在本系列专题的序(深刻理解Linux进程间通信(IPC))中,提到对于消息队列、信号灯、以及共享内存区来说,有两个实现版本:POSIX的以及系统V的。Linux内核(内核2.4.18)支持POSIX信号灯、POSIX共享内存区以及POSIX消息队列,但对于主流Linux发行版本之一redhad8.0(内核2.4.18),还没有提供对POSIX进程间通信API的支持,不过应该只是时间上的事。

~~~~~~~~~~~~~~~

/*****************
 * * test.c* *
******************/

#include <sys/msg.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

void msg_stat(int, struct msqid_ds);

main()
{
    int gflags, sflags, rflags;
    key_t key;
    int msgid;
    int reval;
    struct msgsbuf{
        int mtype;
        char mtext[1];
    }msg_sbuf;
    struct msgmbuf{
        int mtype;
        char mtext[10];
    }msg_rbuf;
    struct msqid_ds msg_ginfo, msg_sinfo;
    char* msgpath = "/tmp/msgqueue";
    
    key=ftok(msgpath, 'a');
    gflags = IPC_CREAT|IPC_EXCL;
    msgid = msgget(key, gflags|00666);
    if(msgid == -1)
    {
        printf("msg create error\n");
        return;
    }
    
    msg_stat(msgid, msg_ginfo);
    sflags=IPC_NOWAIT;
    msg_sbuf.mtype = 10;
    msg_sbuf.mtext[0] = 'a';
    reval = msgsnd(msgid, &msg_sbuf, sizeof(msg_sbuf), sflags);
    if(reval == -1)
    {
        printf("message send error\n");
    }
    
    msg_stat(msgid, msg_ginfo);
    rflags = IPC_NOWAIT|MSG_NOERROR;
    reval = msgrcv(msgid, &msg_rbuf, 4, 10, rflags);
    if(reval == -1)
        printf("read msg error\n");
    else
        printf("read from msg queue %d bytes\n", reval);
    
    msg_stat(msgid, msg_ginfo);
    msg_sinfo.msg_perm.uid = 8;
    msg_sinfo.msg_perm.gid = 8;
    msg_sinfo.msg_qbytes = 16388;
    
    reval = msgctl(msgid, IPC_SET, &msg_sinfo);
    if(reval == -1)
    {
        printf("msg set info error\n");
        return;
    }
    msg_stat(msgid, msg_ginfo);
    reval = msgctl(msgid, IPC_RMID, NULL);
    if(reval == -1)
    {
        printf("unlink msg queue error\n");
        return;
    }
}

void msg_stat(int msgid, struct msqid_ds msg_info)
{
    int reval;
    sleep(1);
    reval = msgctl(msgid, IPC_STAT, &msg_info);
    if(reval == -1)
    {
        printf("get msg info error\n");
        return;
    }
    printf("\n");
    printf("current number of bytes on queue is %d\n", msg_info.msg_cbytes);
    printf("number of messages in queue is %d\n",msg_info.msg_qnum);
    printf("max number of bytes on queue is %d\n",msg_info.msg_qbytes);
    printf("pid of last msgsnd is %d\n",msg_info.msg_lspid);
    printf("pid of last msgrcv is %d\n",msg_info.msg_lrpid);
    printf("last msgsnd time is %s", ctime(&(msg_info.msg_stime)));
    printf("last msgrcv time is %s", ctime(&(msg_info.msg_rtime)));
    printf("last change time is %s", ctime(&(msg_info.msg_ctime)));
    printf("msg uid is %d\n",msg_info.msg_perm.uid);
    printf("msg gid is %d\n",msg_info.msg_perm.gid);
}

 

目录
相关文章
|
15天前
|
缓存 监控 Linux
linux进程管理万字详解!!!
本文档介绍了Linux系统中进程管理、系统负载监控、内存监控和磁盘监控的基本概念和常用命令。主要内容包括: 1. **进程管理**: - **进程介绍**:程序与进程的关系、进程的生命周期、查看进程号和父进程号的方法。 - **进程监控命令**:`ps`、`pstree`、`pidof`、`top`、`htop`、`lsof`等命令的使用方法和案例。 - **进程管理命令**:控制信号、`kill`、`pkill`、`killall`、前台和后台运行、`screen`、`nohup`等命令的使用方法和案例。
46 4
linux进程管理万字详解!!!
|
5天前
|
存储 运维 监控
深入Linux基础:文件系统与进程管理详解
深入Linux基础:文件系统与进程管理详解
42 8
|
14天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
47 4
|
15天前
|
消息中间件 存储 供应链
进程间通信方式-----消息队列通信
【10月更文挑战第29天】消息队列通信是一种强大而灵活的进程间通信机制,它通过异步通信、解耦和缓冲等特性,为分布式系统和多进程应用提供了高效的通信方式。在实际应用中,需要根据具体的需求和场景,合理地选择和使用消息队列,以充分发挥其优势,同时注意其可能带来的复杂性和性能开销等问题。
|
15天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
17天前
|
消息中间件 存储 Linux
|
23天前
|
运维 Linux
Linux查找占用的端口,并杀死进程的简单方法
通过上述步骤和命令,您能够迅速识别并根据实际情况管理Linux系统中占用特定端口的进程。为了获得更全面的服务器管理技巧和解决方案,提供了丰富的资源和专业服务,是您提升运维技能的理想选择。
25 1
|
1月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
22 1
|
1月前
|
消息中间件 Linux API
Linux c/c++之IPC进程间通信
这篇文章详细介绍了Linux下C/C++进程间通信(IPC)的三种主要技术:共享内存、消息队列和信号量,包括它们的编程模型、API函数原型、优势与缺点,并通过示例代码展示了它们的创建、使用和管理方法。
30 0
Linux c/c++之IPC进程间通信
|
4月前
|
消息中间件 C语言 RocketMQ
消息队列 MQ操作报错合集之出现"Connection reset by peer"的错误,该如何处理
消息队列(MQ)是一种用于异步通信和解耦的应用程序间消息传递的服务,广泛应用于分布式系统中。针对不同的MQ产品,如阿里云的RocketMQ、RabbitMQ等,它们在实现上述场景时可能会有不同的特性和优势,比如RocketMQ强调高吞吐量、低延迟和高可用性,适合大规模分布式系统;而RabbitMQ则以其灵活的路由规则和丰富的协议支持受到青睐。下面是一些常见的消息队列MQ产品的使用场景合集,这些场景涵盖了多种行业和业务需求。