学点PYTHON基础的东东--数据结构,算法,设计模式---单向链表

简介: 看来看来,还是以下这个实现最优雅。。 其它的,要么NODE冗余,要么初始化丑陋。。。 #!/usr/bin/env python # -*- coding: utf-8 -*- class Node: def __init__(self, initdata): self.

看来看来,还是以下这个实现最优雅。。

其它的,要么NODE冗余,要么初始化丑陋。。。

#!/usr/bin/env python
# -*- coding: utf-8 -*-


class Node:
    
  def __init__(self, initdata):
    self.__data = initdata
    self.__next = None
    
  def getData(self):
    return self.__data

  def getNext(self):
    return self.__next

  def setData(self, newdata):
    self.__data = newdata
    
  def setNext(self, newnext):
    self.__next = newnext

    
class SinCycLinkedlist:
    
  def __init__(self):
    self.head = Node(None)
    self.head.setNext(self.head)
    
  def add(self, item):
    temp = Node(item)
    temp.setNext(self.head.getNext())
    self.head.setNext(temp)
    
  def remove(self, item):
    prev = self.head
    while prev.getNext() != self.head:
      cur = prev.getNext()
      if cur.getData() == item:
        prev.setNext(cur.getNext())
      prev = prev.getNext()
      
  def search(self, item):
      
    cur = self.head.getNext()
    while cur != self.head:
      if cur.getData() == item:
        return True
      cur = cur.getNext()
    return False

  def empty(self):
    return self.head.getNext() == self.head
  def size(self):
    count = 0
    cur = self.head.getNext()
    while cur != self.head:
      count += 1
      cur = cur.getNext()
    return count

if __name__ == '__main__':
  s = SinCycLinkedlist()
  print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
  s.add(19)
  s.add(86)
  print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
  print('86 is%s in s' % ('' if s.search(86) else ' not',))
  print('4 is%s in s' % ('' if s.search(4) else ' not',))
  print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))
  s.remove(19)
  print('s.empty() == %s, s.size() == %s' % (s.empty(), s.size()))

目录
相关文章
|
4天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
|
28天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
16天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
15天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
57 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
15天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
50 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
58 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
19天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
33 2
|
1月前
|
设计模式 监控 数据库连接
Python编程中的设计模式之美:提升代码质量与可维护性####
【10月更文挑战第21天】 一段简短而富有启发性的开头,引出文章的核心价值所在。 在编程的世界里,设计模式如同建筑师手中的蓝图,为软件的设计和实现提供了一套经过验证的解决方案。本文将深入浅出地探讨Python编程中几种常见的设计模式,通过实例展示它们如何帮助我们构建更加灵活、可扩展且易于维护的代码。 ####
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)